Streptomyces neyagawaensis

From MicrobeWiki, the student-edited microbiology resource
Jump to: navigation, search
This student page has not been curated.

Streptomyces neyagawaensis Yamamoto et al 1960.

Classification [8, 22, 29]

Higher Order Taxa

Domain: Bacteria Phylum: Actinobacteria Class: Actinobacteria Order: Actinomycetales Family: Streptomycetaceae

Genus & Species:

Genus: Streptomyces Group Diastatochromogenes Species: neyagawaensis


Description and Significance


Named for the city of Neyagawa, Osaka Prefecture, Japan Isolated from a soil sample; described and named in 1960 by a team led by Hiroichi Yamamoto of Takeda Chemical Industries Ltd. [21, 22]


Phylogenetic Relationships

Elesawy and Szabó [8] proposed the assignment of S. neyagawaensis to the Diastatochromogenes cluster, which also includes S. bottropensis, S. diastatochromogenes, S. eurythermus, S. griseosporeus and S. scabiei. This was affirmed in 1996 by Takeuchi et al [30] and in 2004 by Lanoot [20]

In 1983, Williams et al [32] published a paper where they arranged Streptomyces species by clusters, which took into account spore morphology and color alongside genetic similarities. S. neyagawaensis (along with 37 other species) was assigned to Cluster 18, based on the characteristics of S. cyaneus. Cluster 18 contained the following: S. azureus, S. bellus, S. caelestis, S. chartreusis, S. coeruleofuscus, S. coeruleorubidus, S. coerulescens, S. curacoi, S. lanatus, S. arenae, S. echinatus, S. griseochromogenes, S. afghaniensis, S. janthinus, S. longisporus, S. purpurascens, S. roseoviolaceus, S. violarus, S. violatus, S. cinnabarinus, S. hawaiiensis, S. luteogriseus, S. neyagawaensis, S. resistomycificus, S. collinus, S. paradoxus, S. griseorubiginosus, S. pseudovenezulae, S. fumanus and Str. sp. Soil isolate M1.


In 2005, Choi et al published a chart outlining S. neyagawaensis and its phylogenetic relationships [4].


In 2012, Labeda et al [19, 20] made S. neyagawaensis part a clade together with the following species: S. decoyinicus, S. hygroscopicus ossamyceticus, S. ipomoeae, and S. torulosus.

Also in 2012, Rong and Hwang [24] made S. neyagawaensis part of a clade with S. ipomoeae, S. hydroscopicus ossamyceticus, S. torulosus, S. caerulaeus, and S. phaeofacens


Genomic Structure The genus Streptomyces has what is believed to be one of thee largest genomes of any known microbial group. Streptomyces genomes contain the following common features [36]: • genomes are twice as large as other related genera (e.g. Mycobacterium) • 6 colonies of the ribosomal RNA operon • 6 Mbp core region, with 2 attached “arm” regions to code for conditionally adaptive traits • linear shape • >70% guanine-cytosine nucleotide base pairs, which imparts increased thermodynamic stability. Per Williams et al [33], C+G base pairing can account for 69-78% of the Streptomyces genome • gene density and extensive overlapping of coding sequences, making for difficult reconstruction • frequent horizontal gene transfer, leading to a higher than average number of pathogens

Cell Structure and Metabolism

Streptomyces is a filamentous, gram-positive species. Smooth spores germinate to produce a grayish substrate mycelium, followed by white aerial hyphae which form spiral spore chains. [2, 10, 14, 16]

/Users/opmlab/Desktop/Picture clipping.pictClipping /Users/opmlab/Desktop/Picture clipping 2.pictClippingStreptomyces neyagawaensis Yamamoto et al 1960.


An important component of the cell wall of S. neyagawaensis is LL-2,6-diaminoheptanedioate, aka LL-DAP [4, 14, 16], an amino acid derivative of lysine. LL-DAP is critical for the manufacture of new cell wall proteoglycan.

Kuntzner [18] noted that S. neyagawaensis can digest cellulose and lignin. In a study identifying it as a component of the gut microbiome of Emerald Ash Borer [31], it was found to play a role in the enzymatic digestion of carboxymethyl-cellulose. In addition to hydrolyzing casein and digesting carboxymethyl-cellulose, S. neyagawaensis utilizes the following compounds as carbon sources [4, 14]: Myo-Inositol, D-Mannitol, L-Arabinose, D-Fructose, D-Glucose, L-Rhamnose, D-Xylose, Sucrose and Raffinose.

Wirth and Ulrich [34] measured the cellulolytic capabilities of 39 strains of Streptomyces. Out of the 39 isolates, 11 were capable of degrading all substrates, 17 degrade carboxymethyl-cellulose alone, and 11 digested both CMC and colloidal cellulose.


Ecology

S. neyagawaensis is an aerobic species, commonly found in soils, but occasionally isolated from aquatic environments and insect guts.

In 2008, Vasanthakumar et al [31] identified S. neyagawaensis (along with S. ipomoeae, Burkholderia cepacia, and Erwinia persicinus as part of the gut microbiome of Emerald Ash Borer (Agrilus planipennis Fairmaire), where the complex acted as digesters of carboxy methylcellulose.


Pathology

S. neyagawaensis itself is not phytopathogenic [2]

The following members of the Diastatochromagenes group have been identified as pathogens of potato and sweet potato[29]: S. scabiei, S. europaeiscabiei, S. stelliscabiei (Potato Scab) and S. ipomoeae (Sweet Potato Soft Rot). According to Bukhalid et al [2] pathogenicity within this clade is governed via horizontal transfer of the nec1 gene, which produces a “phytopathogenic island” within the genome.

Application to Biotechnology

• Strain HYJ0209-MK50 (aquatic isolate, Lake Juam, Korea,) [4, 27] o Controls the biomass of cyanobacterium Microcystis aeruginosa NIES-298, which was strongly suppressed, by up to 84.5%. This strain was also effective against a wide range of algae, including Chlorella sp., the diatoms Aulacoseira granulata and Stephanodiscus hantzschii, and four cyanobacteria, M. aeruginosa NIES-44, Anabaena cylindrica, Anabaena flos-aquae, and Oscillatoria sancta. • Strain SL-387 (soil isolate, Korea)[5,6] o Source of MR-387A & MR-387B—peptide inhibitors [7], part of treatment regimen for adult non-lymphocytic leukemia and metastatic fibrosarcoma • Strain N60 (Egypt) [9] o Source of Anthracidin A—algae and fish toxin • Strains JCM-4796 & NBRC-13477 (soil isolates, Japan) [11, 12, 21, 23, 35] o Source of Concanamycin A (Folimycin) –anti-inflamatory, potential treatment for osteoporosis • Strain NR0577 [15] o Source of Tetrafibricin [25, 26]—anti-thrombosis drug • Strain 38D10 (soil isolate) [16, 23] o Source of Cocanamycin B— Laboratory trials found it effective against the following plant pathogens: Phytophthora capsici, Ph. parasitica, Botrytis cinerea, Alternaria mali, Fusarium solani, Botryosphaeria dothidea. Additionally, Cocanamycin B was found effective against Candida albicans IFO 1594. • Var. orobolere Source of isoluteolin (Orobol) [35]-- an isoflavone used to assess signal transduction pathways in various cell systems; as a tyrosine kinase inhibitor, it may be able to inhibit the growth of cancerous cells


Culturing Populations

Streptomyces is easily collected for in situ culture w/ a trap formed of two permeable membranes set on soil surface; organisms selectively penetrate and form colonies (method described) numerous unusual strains captured by this method, incl the soil dwelling Str. Neyagawaensis (using agar trap) [10]

Characterization of the antialgal S. neyagawaensis strain HYJ0209-MK50 by culturing at 40 °C on ISP (International Streptomyces Project) media [4] ISP media Substrate mycelium Aerial mycelium Pigment Tryptone-yeast extract (ISP 1) ++ Gray ++ White − Yeast extract-malt extract (ISP 2) + White + White − Glycerol-asparagine (ISP 5) ++ White − − Peptone-yeast extract-iron (ISP 6) + White − Olive brown Tyrosine (ISP 7) ++ Yellow − Olive brown Nitrate (ISP 8) + White ++ White − ISP 9 ++ Yellow + White −


References

1. Alam, M.Z., M. Sultana, M.N. Anwar. 2011. Isolation, identification and characterization of four cellulolytic actinomycetes and their cellulases. Chittagong Univ. J Biol. Sci. Vol 6 2. Bukhalid, R.A., T. Takeuchi, D. Labeda, and R. Loria. 2002. Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically distinct Streptomyces strains in the Diastatochromogenes cluster. Appl. Environ. Microbiol. 68: 738-744

3. Blazic, M., A. Starcevic, M. Lisfi, D. Baranasic, D. Goranovic, S. Fujs, E. Kuscer, G. Kosec, H. Petkovic, J. Cullum, D. Hranueli and J. Zucko. 2012. Annotation of the modular polyketide synthase and nonribosomal peptide synthetase gene clusters in the genome of Streptomyces tsukubaensis NRRL18488. Appl. Environ. Microbiol. 78: 8183-8190.

4. Choi, H.J., B.H. Kim, J.D. Kim, M.S. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol. Control 33: 335–343

5. Chung, M.C., H.J. Lee, H.K. Chun, C.H. Lee, S.I. Kim, and Y.H. Kho. 1996. Bestatin analog from Streptomyces neyagawaensis SL-387. Biosci. Biotech. Biochem. 60: 898-900.

6. Chung, M.C., H.J. Lee, C.H. Lee, H.K. Chun, and Y.H. Kho. 1997. Enantioselective N-Acetylation of 3-Amino-3-phenylpropionic Acid by Cell-free Extracts of Streptomyces neyagawaensis. J. Microbial. Biotechnol. 7: 329-332.

7. Chung, M.C., C.H. Lee, H.J. Lee, Y.H. Kho and H.K. Chun. 1997. Biosynthesis of peptide inhibitor MR-387 by Streptomyces neyagawaensis. Biotechnology Letters 19: 607–610.

8. Elesawy, A.A. and M. Szabo. 1979. Isolation and characterization of Streptomyces scabies strains from scab lesions of potato tubers. Designation of the neotype strain of Streptomyces scabies. Acta Microbiol. Hung. 26: 311-320

9. Ghaly M.F, El-Ayoty Y.M, El-Sherbiny S.A, Fleafil N.S. 2009. Evaluation for the Production of Antialgal Substances from Streptomyces neyagawaensis. Biotechnol. 8: 405-415

10. Gavrish, E., A. Bollmann, S. Epstein, and K. Lewis. 2008. A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72: 257–262

11. Haydock, S.F., A.N. Appleyard, T. Mironenko, J. Lester, N. Scott, and P.F. Leadlay. 2005. Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiol. 151: 3161-3169 
.

12. Horii, S., A. Miyake, K. Yamamoto, and K. Nakazawa. 1959. On foliomycin produced by Streptomyces neyagawaensis. Jap. J. Pharm. Chem. 171: 206-208.

13. Hwang, B.K., S.W. Lim, B.S. Kim, J.Y. Lee, and S.S. Moon. 2001. Isolation and In Vivo and In Vitro Antifungal Activity of Phenylacetic Acid and Sodium Phenylacetate fromStreptomyces humidus. Appl. Environ. Microbiol. 67: 3739-3745

14. Jung, H.H., H.J. Sung, Y.G. Choi, H.C. Yang. 1986. Isolation and identification of cellulolytic Actinomycetes. Kor. J. Appl. Microbiol. Bioeng., 14 (1986), pp. 377–383 [In Korean] . 15. Kamiyama, T., T. Umino, N. Fujisaki, K. Fujimori, T. Satoh, Y. Yamashita, S. Ohshima, J. Watanabe, and K. Yokose. 1993. Tetrafibricin, a novel fibrinogen receptor antagonist. I. Taxonomy, fermentation, isolation, characterization and biological activities. J. Antibiotics 46:1039-1046.

16. Kim, Chang-Jin ; Lee, In-Kyoung ; Yun, Bong-Sik ; Yoo, Ick-Dong. 1993. Concanamycin B, Active substance Against Phytophthora capsici Produced by Streptomyces neyagawaensis 38D10 Strain. Kor J Appl Microbiol Biotechnol. 21: 322-328

17. Kirst, H.A., G.G. Marconi, F.T. Counter, P.W. Ensminger, N.D. Jones, M.O. Cheney, J.E. Toth, and N.E. Allen. 1982. Synthesis and characterization of a novel inhibitor of an aminoglycoside-inactivating enzyme. J Antibiotics 35:1651-1657


18. Kutzner, KJ 1986 in ‪(eds Starr, M.P., H. Satolp, H.G. Trper, A. Ballows and H.G. Schlegel) The Prokaryotes‬: ‪A Handbook on Habitats, Isolation, and Identification of Bacteria‬, Volume 2. New York: Springer-Verlag‬, pp 2028-2090‬‬‬‬‬‬ 19. Labeda, D.P., M. Goodfellow, R. Brown, A. C. Ward, B. Lanoot, M. Vanncanneyt, J. Swings, S.-B. Kim, Z. Liu, J. Chun, T. Tamura, A. Oguchi, T. Kikuchi, H. Kikuchi, T. Nishii, K. Tsuji, Y. Yamaguchi, A. Tase, M. Takahashi, T. Sakane, K. I. Suzuki, and K. Hatano. 2012. Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek 101:73–104.

20. Lanoot, B. 2004. Improved taxonomy of the genus Streptomyces. PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium.

21. MicrobeDB.jp 2014. http://microbedb.jp/MDB/environment/;jsessionid=E34687674B20F295F63497B1F4115CDF?envid=MEO_0000407

22. NCBI Taxonomy Webpage. 2014. http://www.ncbi.nlm.nih.gov/taxonomy

23. Paterson, I., V.A. Steadman nee Doughty, M.D. McLeod, T. Trieselmann. 2011. Stereocontrolled total synthesis of (þ)-concanamycin F: the strategic use of boron-mediated aldol reactions of chiral ketones. Tetrahedron 67: 10119-10128

24. Rong, X. and Y. Huang. 2012. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst. and Appl. Microbiol. 35: 7–18.

25. Satoh, T., Y. Yamashita, T. Kamiyama, and M. Arisawa. 1993. Tetrafibricin: a nonpeptidic fibrinogen receptor inhibitor from Streptomyces neyagawaensis. (ii) its antiplatelet activities. Thrombosis Res. 72: 401-412.

26. Satoh, T., Y. Yamashita, T. Kamiyama, J. Watanabe, B. Steiner, P. Hadvary and M. Arisawa. 1993. Tetrafibricin: a nonpeptidic fibrinogen receptor inhibitor from Streptomyces neyagawaensis (i) its GPIIBIIIA blockage on solid phase binding assay. Thrombosis Res. 72: 389-400.

27. Shi, L. , Y. Cai , P. Li , H. Yang , Z. Liu , L. Kong , Y. Yu & F. Kong. 2009. Molecular identification of the colony-associated cultivable bacteria of the cyanobacterium Microcystis aeruginosa and their effects on algal growth, J Freshwater Ecol 24: 211-218.

28. Shirling, E.B., and D. Gottlieb, D. 1972. Cooperative description of type strains of Streptomyces. V. Additional descriptions. Int. J. Syst. Bacteriol. (1972) 22:265-394.

29. Song, J., S.C. Lee, J.W. Kang, H.J. Baek and J.W. Suh. 2004. Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S–23S rDNA internally transcribed spacer sequences. IJSEM 54: 203-209 


30. Takeuchi, T., H. Sawada, F. Tanaka, and I. Matsuda. 1996. Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16s rRNA sequences. IJSEM 46: 476-479.

31. Vasanthakumar, A., J. Handelsman, P.D. Schloss, L.S. Bauer, and K.F. Raffa. 2008. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ. Entomol. 37: 1344-1353

32. Williams, S.T., M. Goodfellow, G. Alderson, E.M.H. Wellington, P.H.A. Sneath, and M.J. Sackin. 1983. Numerical classification of Streptomyces and related genera. Microbiology 129: 1743-1813.

33. Williams, S.T., M. Goodfellow, G. Alderson,1989 in (eds. N.R. Krieg, A. Parte, W. Ludwig, W.B. Whitman, B.P. Hedlund, B.J. Paster, J.T. Staley, N. Ward, D. Brown) Bergey's Manual of Systematic Bacteriology: Volume 4. pp 2452-2492 . 34. Wirth, S. and A. Ulrich. 2002. Cellulose-degrading potentials and phylogenetic classification of carboxymethyl-cellulose decomposing bacteria isolated from soil. system. Appl. Microbiol. 25: 584–591.

35. Yamamoto, H., K. Nakazawa, S. Horii, and A. Miyake, 1960. Studies on agricultural antibiotic, Folimycin, a new antifungal antibiotic produced by Streptomyces neyagawaensis nov. sp. Nippon Nogeikagaku Kaishi. 34: 268-272.

36. Yaxley, Alice M. 2009. Study of the complete genome sequence of Streptomyces scabies (or scabiei) 87.22. PhD thesis, University of Warwick.

37. Yun, B.S., I.D. Yoo, I.K. Lee, and C.J. Kim. 1993. Concanamycin B, active substance against Phytophthora capsici, produced by Streptomyces neyagawaensis, 38D10 strain. Korean J. Microbiol. Biotechnol. 21: 322-328.