Pathology of Mycoplasma fermentans: Difference between revisions
Line 7: | Line 7: | ||
=2. Description and significance= | =2. Description and significance= | ||
==a. Description== | |||
Mycoplasma fermentans is a Gram-negative (2) non-motile (3), and cell wall-less bacterium (4) found in humans (2). | |||
M. fermentans is a co-infector in immunocompromised individuals and acts as an opportunistic pathogen; that is, M.fermentans will only infect host cells in a person whose immune system is already weakened by another preexisting infection. | |||
By using and/or sequencing the genomes of M64 (2), JER (4), and PG18 (5) strains of M. fermentans, and identifying common environments in which M. fermentans have been found, researchers have been able to identify the genome structure, cell structure, metabolic processes, and ecology of these strains of the bacterium. The strains of this bacterium are highly heterogenous, and thus, the information provided about M64, JER, and PG18 can not necessarily extend to all strains of M. fermentans (6). These particular strains are three that have been sequenced in current research. M64 and JER strains were isolated from non-immunocompromised individuals, whereas PG18 was isolated from an immunocompromised patient with arthritis (2-5). M64 and JER strains contained large amounts of genomic content that allow them to become pathogenetic (2, 4), yet these strains would not have been pathogenetic in the samples from which they were isolated, because they were from individuals with normal immune function. | |||
==b.Significance to Human Society== | |||
M. fermentans carries pathogenic characteristics which negatively affect humans, specifically immunocompromised individuals, and has been shown to become resistant to certain antibiotics (3, 4, 7-9). M. fermentans has the ability to act as a co-infector in immunodeficiency disorders, such as in HIV/AIDS, Amyotrophic Lateral Sclerosis, and rheumatoid arthritis (5; 10-12). M. fermentans is capable of becoming resistant to specific types of antibiotics, such as macrolides and fluoroquinolones (8). M.fermentans infects host cells by adhering to cell membrane surface components, leading to internalization (3). Furthermore, the ability of M. fermentans to adhere to host cells increases in immunocompromised human cells, leading to cell death (3). | |||
=3. Genome structure= | =3. Genome structure= | ||
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? | Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? |
Revision as of 15:44, 11 December 2017
1. Classification
a. Higher order taxa
Bacteria (Domain), Terrabacteria group (Kingdom), Tenericutes (Phylum), Mollicutes (Class), Mycoplasmatales (Order), Mycoplasmataceae (Family), Mycoplasma (Genus), fermentans (Species) (1)
b. Species
Mycoplasma fermentans
2. Description and significance
a. Description
Mycoplasma fermentans is a Gram-negative (2) non-motile (3), and cell wall-less bacterium (4) found in humans (2).
M. fermentans is a co-infector in immunocompromised individuals and acts as an opportunistic pathogen; that is, M.fermentans will only infect host cells in a person whose immune system is already weakened by another preexisting infection.
By using and/or sequencing the genomes of M64 (2), JER (4), and PG18 (5) strains of M. fermentans, and identifying common environments in which M. fermentans have been found, researchers have been able to identify the genome structure, cell structure, metabolic processes, and ecology of these strains of the bacterium. The strains of this bacterium are highly heterogenous, and thus, the information provided about M64, JER, and PG18 can not necessarily extend to all strains of M. fermentans (6). These particular strains are three that have been sequenced in current research. M64 and JER strains were isolated from non-immunocompromised individuals, whereas PG18 was isolated from an immunocompromised patient with arthritis (2-5). M64 and JER strains contained large amounts of genomic content that allow them to become pathogenetic (2, 4), yet these strains would not have been pathogenetic in the samples from which they were isolated, because they were from individuals with normal immune function.
b.Significance to Human Society
M. fermentans carries pathogenic characteristics which negatively affect humans, specifically immunocompromised individuals, and has been shown to become resistant to certain antibiotics (3, 4, 7-9). M. fermentans has the ability to act as a co-infector in immunodeficiency disorders, such as in HIV/AIDS, Amyotrophic Lateral Sclerosis, and rheumatoid arthritis (5; 10-12). M. fermentans is capable of becoming resistant to specific types of antibiotics, such as macrolides and fluoroquinolones (8). M.fermentans infects host cells by adhering to cell membrane surface components, leading to internalization (3). Furthermore, the ability of M. fermentans to adhere to host cells increases in immunocompromised human cells, leading to cell death (3).
3. Genome structure
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?
4. Cell structure
Interesting features of cell structure. Can be combined with “metabolic processes”
5. Metabolic processes
Describe important sources of energy, electrons, and carbon (i.e. trophy) for the organism/organisms you are focusing on, as well as important molecules it/they synthesize(s).
6. Ecology
Habitat; symbiosis; contributions to the environment.
7. Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
7. Key microorganisms
Include this section if your Wiki page focuses on a microbial process, rather than a specific taxon/group of organisms
8. Current Research
Include information about how this microbe (or related microbes) are currently being studied and for what purpose
9. References
It is required that you add at least five primary research articles (in same format as the sample reference below) that corresponds to the info that you added to this page. [Sample reference] Faller, A., and Schleifer, K. "Modified Oxidase and Benzidine Tests for Separation of Staphylococci from Micrococci". Journal of Clinical Microbiology. 1981. Volume 13. p. 1031-1035.