Candidatus Accumulibacter Phosphatis

From MicrobeWiki, the student-edited microbiology resource

PAGE UNDER CONSTRUCTION

Classification

Kingdom: Bacteria

Phylum: Proteobacteria

Class: Betaproteobacteria

Order: unclassified Betaproteobacteria

Family: Candidatus Accumulibacter


Species

Candidatus Accumulibacter phosphatis

NCBI Taxonomy ID: 522306 Sub Groups:

Description and Significance

Ps


Describe the appearance, habitat, etc. of the organism, and why you think it is important. "Candidatus Accumulibacter phosphatis" is of the group of organisms know as polyphosphate-accumulating organisms (PAO).

This organism is used in waste water treatment for the purpose of enhanced biological phosphorus removal (EBPR)(Lu). Waste water effluent can be a major contributor of phosphorous pollution to the environment, which can cause excess nutrient loading that leads to algal blooms. Traditional methods of Phosphorous removal include chemical remobal process and EBPR. Advantages of operating a waste water treatment plant with EBPR are that it significantly lowers operating costs, reduces sludge production and enables sludege to be reused easier, and eliminates chemical biproducts (Blackall, 2002).

Genome Structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?

NCBI Mapped Genome Online genome information

Cell Structure, Metabolism and Life Cycle

Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment. If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Candidatus Accumulibacter Phosphatis is a type of polyphasphate accumulating organism (PAO). PAOs are able to accumulate large amounts of phosphorus in the anaerobic zones of waste water treatment sludge. Sludge that was formed with the help of PAOs measures 4-5% Phosphorous content by dry weight; this is in contrast to 1.5-2% Phosphorous content by dry weight in the absence of PAOs (Blackall, 2002).

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.


Author

Page authored by Johanna Kinster and Kevin Koryto, students of Prof. Jay Lennon Prof. Jay Lennon at Michigan State University.