Candidatus Brocadia anammoxidans

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Candidatus Brocadia anammoxidans

Classification

Higher order taxa

Bacteria; Planctomycetes; Planctomycetacia; Planctomycetales; Candidatus Brocadia

Species

Candidatus Brocadia anammoxidans

Description and significance

Candidatus Brocadia anammoxidans (Ca. B. anammoxidans) are aquatic autotrophs best known for their unique ability to anarobically oxidize ammonia to dinitrogen gas, a reaction otherwise known as the “anammox” process (5). The bacteria were first discovered in a wastewater treatment plant from a yeast factory in the Netherlands. It was observed that ammonia and nitrate concentrations dropped while dinitrogen gas was produced in airtight reactors; Ca. B. anammoxidans were subsequently held responsible for the reaction. The bacteria were isolated from enrichment cultures by density centrifugation and have received ample attention from ecologists who suspect the bacteria’s participation in consuming substantial amounts of nitrogen in the ocean, and from researchers who see the bacteria’s metabolism as a potential in revolutionizing wastewater treatment (3, 8). These microbes are no bigger than one micron in diameter and grow optimally in a pH range of 6.4-8.3 and in a temperature range of 20-43 oC (6, 9). The bacteria is named as such, as Candidatus indicates an uncultureable yet well-characterized organism, Brocadia refers to the Gist-Brocades, the place of its discovery, and anammoxidans describes the process of anaerobic ammonium oxidation (3, 10).

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

1. Butler M.K., Op den Camp H.J.M., Harhangi H.R., Lafi F.F., Strous M., Fuerst J.A. “Close relationship of RNase P RNA in Gemmata and anammox planctomycete bacteria”. Federation of European Microbiological Societies. 2007. Volume 268. p. 244-253.

2. Francis C.A., Beman J.M., Kuypers M.M.M. “New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation”. The ISME Journal. 2007. Volume 1. p. 19-27.

3. Jetten M.S.M., Wagner M., Fuerst J., vanLoosdrecht M., Kuenen G., Strous M. “Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process”. Current Opinion in Biotechnology. 2001. Volume 12. p. 283-288.

4. Kuypers M.M.M., Sliekers A.O., Lavik G., Schmid M., Jorgensen B.B., Kuenen J. G., Damste J.S.S., Strous M., Jetten M.S.M. “Anaerobic ammonium oxidation by anammox bacteria in the Black Sea”. Nature. 2003. Volume 422 p. 608-611.

5. Mulder A., van de Graaf A.A., Robertson L.A., Kuenen J.G. “Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor”. FEMS Microbiology Ecology. 1995. Volume 16. p. 177-184.

6. Schmidt I., Sliekers O., Schmid M., Cirpus I., Strous M., Bock E., Kuenen J.G., Jetten M.S.M. “Aerobic and anaerobic ammonia oxidizing bacteria – competitors or natural partners?”. FEMS Microbiology Ecology. 2002. Volume 39. p. 175-181.

7. Schmid M., Schmitz-Esser S., Jetten M., Wagner M. “16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implication for phylogeny and in situ detection”. Environmental Microbiology. 2001. Volume 3. p. 450-459.

8. Schmid M.C., Mass B., Dapena A., van de Pas-Schoonen K., van de Vossenberg J., Kartal B., van Niftrik L., Schmidt I., Cirpus I., Kuenen J.G., Wagner M., Damste J.S.S., Kuypers M., Revsbech N.P., Mendez R., Jetten M.S.M., Strous M. “Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria”. Applied and Environmental Microbiology. 2005. Volume 71. p. 1677-1684.

9. Sinninghe-Damste J.S., Strous M., Rijpstra W.I., Hopmans E.C., Geenevasen J.A.A., Van Duin A.C.T., Van Niftrik L.A., Jetten M.S.M. “Linearly concatenated cyclobutate lipids form a dense bacterial membrane”. Nature. 2002. Volume 419. p. 708-712.

10. Stackebrandt E., Frederiksen W., Garrity G.M., Grimont P.A.D., Kampfer P., Maiden M.C.J., Nesme X., Rossello-Mora R., Swings J. Truper H.G., Vauterin L., Ward A.C., Whitman W.B. “Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology”. Internation Journal of Systematic and Evolutionary Microbiology. 2002. Volume 52. p. 1043-1047.

11. Tsushima I., Kindaichi T., Okabe S. “Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR”. Water Research. 2007. Volume 41 p. 785-794.

12. Tsushima I., Ogasawara Y., Kindaichi T., Satoh H., Okabe S. “Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors”. Water Research. 2007. Volume. 41. p. 1623-1634.

Edited by Daniel Calaguas, student of Rachel Larsen