Coral microbial ecology

From MicrobeWiki, the student-edited microbiology resource

Introduction

Corals are invertebrate marine animals belonging to the phyla Cnidaria and class Anthozoa. They thrive in salty ocean water. Although some corals have been found as deep as 91 m (300 ft), most live optimally at shallower depths of 70 m (230 ft) or less (3). Corals are either soft or hard, but reefs form only with the presence of hard coral. Soft coral doesn't have the capability to make reefs but still may be present. Hard corals have a calcium carbonate skeleton (3). The microbial community found in coral reefs are co-habitating, non-pathogenic, and consist of bacteria, archaea, and fungi. They live in the mucus, tissue, and skeleton of coral (1). These microbes effect the ecosystem's food webs, life cycles, chemical cycles, nutrient cycles, and regulation of pathogenic microbes, which are important factors in coral resilience. Coral microbial ecology studies these relationships between corals and microorganisms in the hope of understanding coral resilience and disease to protect a valuable, biologically diverse ecosystem as well as to identify and predict environmental change.



Zooxanthellae Symbiosis

View of zooxanthellae cells under a light microscope photo by Scott R. Santos http://agsci.oregonstate.edu/aquatic-bt/curriculum/marine-biotech/zooxanthellae

The microbiome of coral is the most genetically adaptable part of the coral. It is able to adapt in a period of days or hours, whereas the coral itself takes many generations (6). Such changes may be indicative of stress on the coral. The microbes’ functions include nitrogen fixation, capturing iron, waste cycling, and production of antibiotics (1). Zooxanthellae are single-cell photosynthetic algae that live in the coral's gastrodermis, the tissue covering the gastrovascular cavity (3). Coral and zooxanthellae have a positive symbiotic relationship. Most of the coral's food intake is reliant on the products of the zooxanthellae's photosynthesis. In return for the food source, these microbes get a place to live and some inorganic nutrients. The pigment of coral is also a product of healthy zooxanthellae. Cyanobacteria also live inside the coral tissue and produce food for the coral, although in much lesser amounts than zooxanthellae. Some cyanobacteria are able to perform nitrogen fixation, which converts nitrogen in the coral’s aquatic atmosphere into usable compounds.

Disease

Include some current research, with at least one image.

Bleaching

Under stress, such as a shift in water temperature or salinity or even excess of sediment, nutrients, or chemicals, zooxanthellae are expelled from the coral. This causes the coral to lose it's color by revealing the coral's white calcium carbonate skeleton. The whitened coral is said to be 'bleached.' If the stress continues, the coral may die. However, once the stress is reduced or eliminated, the zooxanthellae will return to the coral and restore it back to health. Bleached coral is believed to be more susceptible to disease.

Resilience



Current Research

Overall text length should be at least 1,000 words (before counting references), with at least 2 images. Include at least 5 references under Reference section.

References

1. Kellog, Christiana. "Coral Microbial Ecology." St. Petersburg Coastal and Marine Science Center. U.S. Geological Survey, 22 Nov 2013. Web. 4 Dec 2013.

2."Coral Reefs and Resilience- What is Resilience?." Reef Resilience . The Nature Conservancy , n.d. Web. 4 Dec 2013.

3. "About Corals." Coral Reef Systems. Sripps Institution of Oceanography , n.d. Web. 4 Dec 2013. <http://coralreefsystems.org/content/about-corals>.

4. "Coral Disease- Coral Bleaching." St. Petersburg Coastal and Marine Science Center. U.S. Geological Survey, 22 Nov 2013. Web. 4 Dec 2013.

5. "Coral Disease- Black-Band Disease." St. Petersburg Coastal and Marine Science Center. U.S. Geological Survey, 22 Nov 2013. Web. 4 Dec 2013.

6. "Coral Associated Microbes." St. Petersburg Coastal and Marine Science Center. U.S. Geological Survey, 22 Nov 2013. Web. 4 Dec 2013.

7. Garren, Melissa, and Azam Farooq. "New directions in coral reef microbial ecology." Environmental Microbial Ecology. 14.4 (2012): 833-844. Web. 4 Dec. 2013.

8. Knowlton, Nancy, and Forest Rohwer. "Multispecies Microbial Mutualisms on Coral Reefs: The Host as a Habitat." American Naturalist. 162.S4 (2003): n. page. Web. 4 Dec. 2013.



Edited by Emily Stegner, student of Joan Slonczewski for BIOL 116 Information in Living Systems, 2013, Kenyon College.