From MicrobeWiki, the student-edited microbiology resource
Jump to: navigation, search

A Microbial Biorealm page on the genus Desulfobacter



Higher order taxa:

Bacteria; Proteobacteria; delta/epsilon subdivisions; Deltaproteobacteria; Desulfobacterales; Desulfobacteraceae


NCBI: Taxonomy Genome

D. postgatei, D. hydrogenophilus, D. latus, and D. curvatus

Description and Significance

Desulfobacter is a mesophilic gram-negative genera that is capable of oxidizing organic substrate completely to CO2 in anoxic codition. Desulfobacter is mainly found in brackish and marine environemnt and has a oval or vibrio morphology [1]. The genus desulfobacter includes acetateutelizing sulphate-reducing bacteria. 10 Methyl 16:0 is an unusual bacterial phospholipid fatty acids (PLFA) characteristic of Desulfobacter-type sulphate-reducing bacteria and could be used as a biomarker for these bacteria [2,3].

Genome Structure


Micobiological and molecular studies have suggested the presence of different sulfate reducing bacteria (SBR)in oxic and anoxic layers of soil profile. Dsulfobater, Desulfobulbus and desulfotomoculum species were detected in restricly anoxic conition while Desulfococcus, Desolfonema, and Desulfovibrio species appear to be perdominantly in oxic layers [4]. The main habitat of Desulfobacter is marine sendiment and brackish water.

The Plum Island Estuary Microbial Observatory (PIMO), located at the Plum Island Estuary LTER site in coastal Massachusetts, identifies prokaryotes in salt marsh sediments and plankton and determines their role in controlling major ecosystem processes. Among SRBs identified, relatives of Desulfosarcina variabilis and Desulfobacterium anilini were found to be persistent in the sediment.


[1] Lary L. Barton Biotechnology handbooks. Vol. 8-Sulfate reducing bacteria. 1995 Plenum Press, New York.

[2] Dowling, N.J., Widdel, F. and White, D.C. (1986) Comparison of the phospholipid ester-linked fatty acid biomarkers of acetate-oxidising sulphate-reducers and other sulphide-forming bacteria. J. Gen. Microbiol. 132,1815-1825.

[3] Dowling, N.J., Nichols, P.D. and White, D.C. (1988)Phospholipid fatty acid and infra-red spectroscopic analysis of a sulfate-reducing consortium. FEMS Microbiol.Ecol. 53, 325-334.

[4] Sulphate reducing bacteria-book)