Ehrlichia canis: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 19: Line 19:




Ehrlichia Canis is a rod shaped, "small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium" transmitted by the brown dog tick, ''Rhipicephalus sanguineus''. It resides as a microcolony inside a "membrane-lined intracellular vacuole, primarily within monocytes and macrophages of mammalian hosts". [http://jb.asm.org/cgi/content/full/188/11/4015#F1] ''E. canis'' was first discovered in Algeria in 1935 and has now been known to have spread all over the United States, Europe, South America, and Asia.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?itool=abstractplus&db=pubmed&cmd=Retrieve&dopt=abstractplus&list_uids=7050062] Infected dogs that are not treated can become asymptomatic carriers of the disease for years and eventually die from massive hemhorrage. Little is understood about the pathogenesis of canine and human ehrlichioses so the ''E. canis'' genome has been sequenced  for more information critical for the development of effective vaccines. The complete genome was sequenced by the Joint Genome Institute by using a combination of 3-kb, 8-kb, and fosmid (40-kb) libraries. [http://jb.asm.org/cgi/content/full/188/11/4015#R26]
Ehrlichia Canis is a rod shaped, "small obligately intracellular, tick-transmitted, Gram-negative, {alpha}-proteobacterium" transmitted by the brown dog tick, ''Rhipicephalus sanguineus''. It resides as a microcolony inside a "membrane-lined intracellular vacuole, primarily within monocytes and macrophages of mammalian hosts". [http://jb.asm.org/cgi/content/full/188/11/4015#F1] ''E. canis'' was first discovered in Algeria in 1935 and has now been known to have spread all over the United States, Europe, South America, and Asia.[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?itool=abstractplus&db=pubmed&cmd=Retrieve&dopt=abstractplus&list_uids=7050062] Infected dogs that are not treated can become asymptomatic carriers of the disease for years and eventually die from massive hemhorrage. Little is understood about the pathogenesis of canine and human ehrlichioses so the ''E. canis'' genome has been sequenced  for more information critical for the development of effective vaccines. The complete genome was sequenced by the Joint Genome Institute by using a combination of 3-kb, 8-kb, and fosmid (40-kb) libraries. [http://jb.asm.org/cgi/content/full/188/11/4015#R26]


== Genome Structure ==
== Genome Structure ==

Revision as of 19:11, 4 June 2007

Classification

Higher order taxa

Bacteria; Proteobacteria; Alphaproteobacteria; Ricketsiales; Anaplasmataceae; Ehrlichia


Genus

Ehrlichia Canis

NCBI: Taxonomy

Description and significance

Ehrlichia Canis is a rod shaped, "small obligately intracellular, tick-transmitted, Gram-negative, {alpha}-proteobacterium" transmitted by the brown dog tick, Rhipicephalus sanguineus. It resides as a microcolony inside a "membrane-lined intracellular vacuole, primarily within monocytes and macrophages of mammalian hosts". [1] E. canis was first discovered in Algeria in 1935 and has now been known to have spread all over the United States, Europe, South America, and Asia.[2] Infected dogs that are not treated can become asymptomatic carriers of the disease for years and eventually die from massive hemhorrage. Little is understood about the pathogenesis of canine and human ehrlichioses so the E. canis genome has been sequenced for more information critical for the development of effective vaccines. The complete genome was sequenced by the Joint Genome Institute by using a combination of 3-kb, 8-kb, and fosmid (40-kb) libraries. [3]

Genome Structure

The genome of E. canis consists of a single, circular chromosome. Its genome is smaller than other ehrlichiae. Several interesting genome features include a large set of proteins with transmembrane helices and other components prominent in proteins associated with pathogen-host interactions. There were other features that portrayed immune evasion and facilitation of persistent infections. [4]

Cell structure and metabolism

E. canis is an aerobic organism that is unable to use glucose or fructose as a carbon or energy source. The main energy and carbon source is amino acids. Because it is a persistent infection, E. canis has characterisitics that protect itself from host defenses.[5] It lacks peptidoglycan and lipopolysaccharides, which are "major pathogen-associated molecular patterns found in the cell walls of other gram-negative bacteria". These fundamental structural and composition differences in cell walls may be not be "recognized by innate pattern recognition receptors such as Toll-like receptors 2 and 4". [6]

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

E. canis has a direct relationship with the adult tick, where it maintains its complex life cycle. There is indirect interaction with dogs as E. canis causes a persistent infection called canine monocytic ehrlichiosis. [7]

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Studies have shown that "partial feeding of nymphs infected as (tick) larvae with E canis" is one possibility for these ticks to be able to infect dogs. The Ehrlichia canis organisms are found in the midgut and salivary glands of infected adult ticks. [8]Once the dog is infected, several signs of ehrlichiosis include marked thrombocytopaenia, pyrexia, reduction in the packed cell volume and the presence of E canis in peripheral blood mononuclear cells.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

A recent finding in the molecular characterization of E. canis is a set of major immunoreactive proteins including glycoproteins and an outer membrane protein family containing 25 paralogous genes “that could be differentially expressed in the tick and mammalian hosts, contributing to persistent infections of the natural hosts”. Three of the major immunoreactive proteins found correspond with the human pathogen, E. chaffeensis. These kinds of glycoproteins have never been found in pathogenic bacteria before and are potentially important targets of the host immune response, attachment to the host cell, and other vital roles in pathobiology. [9]

A common feature of canine monocytic ehrlichiosis is ocular lesions. A study was done to determine the prevalence, type and response to treatment of ocular lesions associated with the disease in several affected dogs. Exudative retinal detachment was the most common ocular symptom along with anterior exudative uveitis and optic neuritis. Studies concluded that canine ehrlichiosis should be considered when dogs are diagnosed with these symptoms. [10]

Studies were done in Japan to detect antibodies against several types of ehrlichia species. Five dogs showed signs of possibly being infected with the domestic Ehrlichia of Japan. This is the first “serological evidence” of canines infected with the domestic Ehrlichia of Japan. [11]

References

K. Mavromatis, C. Kuyler Doyle, A. Lykidis, N. Ivanova, M. P. Francino, P. Chain, M. Shin, S. Malfatti, F. Larimer, A. Copeland, J. C. Detter, M. Land, P. M. Richardson, X. J. Yu, D. H. Walker, J. W. McBride, and N. C. Kyrpides. 2006. "The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies." Journal of Bacteriology, vol. 188, no. 11. (4015-4023)

T.J. Keefe, C.J. Holland, P.E. Salyer, M. Ristic. 1982. "Distribution of Ehrlichia canis among military working dogs in the world and selected civilian dogs in the United States." J Am Vet Med Assoc. 181(3):236-8

R.D. Smith, D.M. Sells, E.H. Stephenson, M.R. Ristic, D.L. Huxsoll. 1976. "Development of Ehrlichia canis, causative agent of canine ehrlichiosis, in the tick Rhipicephalus sanguineus and its differentiation from a symbiotic Rickettsia." American Journal of Veterinary Research 37(2):(119-26)

M. Leiva, C. Naranjo, M.T. Pena. 2005. "Ocular signs of canine monocytic ehrlichiosis: a retrospective study in dogs from Barcelona, Spain." Veterinary Ophthamology 8(6):387-93

M. Watanabe, M. Okuda, M. Tsuji, H. Inokuma. 2004. "Seroepidemiological study of canine ehrlichial infections in Yamaguchi prefecture and surrounding areas of Japan." Veterinary Parisitology 124(1-2):101-7

Edited by Sue Kim, student of Rachel Larsen and Kit Pogliano