Ensifer adhaerens: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 23: Line 23:


==Ecology and Pathogenesis==
==Ecology and Pathogenesis==
Habitat; symbiosis; biogeochemical significance; contributions to environment.<br>
E. adhaerens is capable of binding to a range of Gram-Positive and Gram-Negative bacterial cells; however, the host range of E. adhaerens appears to be limited to primarily Gram-Positive bacteria, which it is capable of lysing [2.3].  Attachment to prey bacteria appears to involve appendages referred to as “Bars” by L.E. Casida in the initial publications detailing the predatory process [3]; the purpose of this appendage is, as of yet, unknown.  It is possible that bars function in attachment or promotion of nutrient diffusion to Ensifer cells, however neither of these hypotheses have been assessed.  Much of what is known about the predatory habits of Ensifer adhaerens was worked out in the early 1980’s, and few molecular details of the process are known.  Remaining areas of study regarding Ensifer predation include what genetic potential is required to act as a bacterial predator, as well as the molecular details of the predatory process.  With the recent availability of the Casida strain genome, this area can be studied in greater detail with modern molecular genetics [6].  Potential areas to explore this process in greater detail include transcriptomics and forward genetics screens to determine patterns of gene expression during predation and essential predation genes, respectively.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.<br><br>


==References==
==References==

Revision as of 04:21, 29 April 2020

This student page has not been curated.

Classification

Bacteria > Proteobacteria > Alphaproteobacteria > Rhizobiales > Rhizobiacea > Ensifer > Adhaerens

Species

NCBI: Taxonomy

Ensifer adhaerens

Description and Significance

E. adhaerens is a terrestrial, rod-shaped Alphaproteobacteria that belongs to the Rhizobiales family [1,2,3]. E. adhaerens survives in the soil as a facultative predator of soil bacteria, and was initially identified in screens to determine a microbial factor for Micrococcus luteus’ inability to grow in soil [2,3,4]. E. adhaerens is capable of growth on glucose as a sole substrate in buffered media containing salts, indicating that the predatory behavior of E. adhaerens is not obligatory and that E. adhaerens is biosynthetically competent [2].

Genome Structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?


Cell Structure, Metabolism and Life Cycle

As with several other members of the Alphaproteobactiera, Ensifer ahdaerens undergoes a polar budding cell division process [2]. This process is common to Agrobacterium, Rhodopseudonas, and Sinorhizobium [5]. While the genetic and biochemical factors involved in E. adhaerens cell cycle have not been directly studied, the Rhizobial cell division process is a current topic of research and mirrors the effort to characterize the Alphaproteobacteria Caulobacter crescentus cell cycle.

Ecology and Pathogenesis

E. adhaerens is capable of binding to a range of Gram-Positive and Gram-Negative bacterial cells; however, the host range of E. adhaerens appears to be limited to primarily Gram-Positive bacteria, which it is capable of lysing [2.3]. Attachment to prey bacteria appears to involve appendages referred to as “Bars” by L.E. Casida in the initial publications detailing the predatory process [3]; the purpose of this appendage is, as of yet, unknown. It is possible that bars function in attachment or promotion of nutrient diffusion to Ensifer cells, however neither of these hypotheses have been assessed. Much of what is known about the predatory habits of Ensifer adhaerens was worked out in the early 1980’s, and few molecular details of the process are known. Remaining areas of study regarding Ensifer predation include what genetic potential is required to act as a bacterial predator, as well as the molecular details of the predatory process. With the recent availability of the Casida strain genome, this area can be studied in greater detail with modern molecular genetics [6]. Potential areas to explore this process in greater detail include transcriptomics and forward genetics screens to determine patterns of gene expression during predation and essential predation genes, respectively.

References

  1. Rogel, MA; et al. Nitrogen-Fixing Nodules with Ensifer adhaerens Harboring Rhizobium tropici Symbiotic Plasmids. Applied and Environmental Microbiology 67(7):3264-3268
  2. Casdia, LE. Bacterial Predators of Micrococcus luteus in Soil. 1980. Applied and Environmental Microbiology 39(5): 1035-1041.
  3. Casida, L.E. Jr. Ensifer adhaerens gen. nov., sp. nov.: a Bacterial Predator of Bacteria in Soil. 1982. International Journal of Systematic Bacteriology 32(3):339-345.
  4. Germida, JJ; Casida, LE. 1983. Ensifer adhaerens Predatory Activity Against Other Bacteria in Soil, as Monitored by Indirect Phage Analysis. Applied and Environmental Microbiology 45(4):1380-1388.
  5. Brown, PJB; et al. Polar Growth in the Alphaproteobacterial order Rhizobiales. 2012. Proceedings of the National Academy of Science 109(5): 1697-1701.
  6. Williams, LE; et al. Complete Genome Sequence of the Predatory Bacterium Ensifer Adhaerens. 2017. Microbiology Resource Announcements
  7. Young, JM. The Genus Name Ensifer Casida 1982 Takes Priority Over Sinorhizobium Chen Et Al. 1988, and Sinorhizobium morelense Wang Et Al. 2002 is a Later Synonym of Ensifer adhaerens Casida 1982. Is the Combination “Sinorhizobium adhaerens” (Casida 1982) Willems Et Al. 2003 Legitimate? Request for an Opinion. 2003. Int J Syst Evol Microbiol 53(6):2107-2110.
  8. Xu, L; et al. 2016. Characterization of the Biosorption and Biodegradation Properties of Ensifer adhaerens: A Potential Agent to Remove Polychlorinated Biphenyls from Contaminated Water. Journal of Hazardous Materials 302: 314-322.
  9. Zhou, G; et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth promoting rhizobacterium Ensifer adhaerens strain TMX-23. 2013. Applied Microbial and Cell Physiology 97:4065-4074.
  10. Zuniga-Soto, E; et al. Ensifer-mediated Transformation: An Efficient non-Agrobacterium Protocol for the Genetic Modification of Rice. 2015. SpringerPlus 4:600.
  11. Zuniga-Soto, E; et al. Insights into the Transcriptomic Response of the Plant Engineering Bacterium Ensifer adhaerens OV14 During Transformation. 2019. Science Reports 9(1):10344.

Author

Page authored by Joseph Stembel, student of Prof. Jay Lennon at IndianaUniversity.