Difference between revisions of "Geobacillus kaustophilus"

From MicrobeWiki, the student-edited microbiology resource
Line 26: Line 26:
  
 
==Cell structure and metabolism==
 
==Cell structure and metabolism==
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
+
The bacteria is thermophilic, which means it is capable of surviving in high temperatures.  It has one membrane, flagella and is rod-shaped.  The bacterium is also an aerobic endosporing-forming Gram-positive microbe (5).  When grown in colonies, the cells are convex and transparent.  They produce spores that are oval to cylindrical and may swell the sporangium (3).
  
 
==Ecology==
 
==Ecology==

Revision as of 18:50, 5 June 2007

A Microbial Biorealm page on the genus Geobacillus kaustophilus

Classification

Higher order taxa

Domain: Bacteria; Phylum: Firmicutes; Class: Bacilli; Order: Bacilla; family:Bacillaceae [Others may be used. Use NCBI link to find]


Species

NCBI: Taxonomy

Genus: Geobacillus species: kaustophilus

Description and significance

This microbe was isolated from the deep-sea sediment of the Mariana Trench (2). Its optimal growth is at a temperature of 60 degrees Celsius with a temperature limit of 74 degrees Celsius (2). Bacillus is translated as “small rod,” and geo is “earth” or “soil” so the genus name is roughly translated to earth or soil small rod (6). In its species name, “kausto” means “heat” while “philus” means love (2). Therefore, it is a heating-loving bacteria. Geobacillus kaustophilus grow in aquatic environments. Other species in the genus Geobacillus can also be found in petroleum reservoirs and cool soil environments (3). Species in the Geobacillus genus can live in a wide variety of environments. The microbe can withstand a pH of 2 through 12, temperatures between 5 and 78 degrees Celsius, and a salinity of 0 to 30% (5).

Genome structure

Geobacillus kaustophilus is made up of a 3.54Mb chromosome. It is circular and has 3,544,776 base pairs. The microbe also consists of a 47.9kb plasmid. This, too, is circular and has 47,890 base pairs (2). After its genome was sequenced, the genes for protamine, spermine synthase, and tRNA methyltranferase were found. These genes are believed to have a role in the DNA/RNA stability of the microbe at high temperatures (2). The protamine-like gene, in particular, are unique to Geobacilus kaustophilus (5). Protamines enble the DNA of an organism to be more compact by binding to it. Spermine also plays a part in DNA stability and is the major polyamine in the microbe while tRNA methltranferase is responsible for the thermoadaptation of the microbe to its environment (5). Researchers have founded 3498 protein-coding sequences in Geobacillus kaustophilus, averaging about 862 nucleotides in size. These coding sequences were determined to make up about 86% of the chromosome (5).

Cell structure and metabolism

The bacteria is thermophilic, which means it is capable of surviving in high temperatures. It has one membrane, flagella and is rod-shaped. The bacterium is also an aerobic endosporing-forming Gram-positive microbe (5). When grown in colonies, the cells are convex and transparent. They produce spores that are oval to cylindrical and may swell the sporangium (3).

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen and Kit Pogliano