Giardia lamblia

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Giardia lamblia

Classification

Higher order taxa

Domain Eukaryota
(Unspecified rank) Diplomonadida group
(Unspecified rank) Diplomonadida
Family Hexamitidae
Sub-family Giardiinae
Genus Giardia

Species

Species: Giardia lamblia
Other names: Giardia intestinalis, Giardia duodenalis

NCBI: [1]


Description and significance

Giardia lamblia is a flagellated, microaerophilic microorganism, first discovered by Van Leeuwenhoek in 1681, who found it in his own diarrheal stool. The G. lamblia trophozite, vegetative, motile form of G. lamblia is pear-shaped and have unique morphology such as two identical nuclei, a ventral disc for adhesion to the host intestine, and flagella [see also Structure]. The cyst is the reproductive form, and consists of a protective cyst wall as well as four nuclei.

The genus Giardia has been isolated from more than 40 species. The species G. lamblia is known to infect human, mammals, reptiles, and birds, cows, sheeps and pigs, depending on the strain (Adam 2001).

G. lamblia is one of the major cause of waterborne diseases worldwide (CDC, 2004), and infection results in giardiasis (characterized by malabsorption and severe diarrhea). Giardia-induced intestinal infection is particularly severe in developing world, where giardiasis occurrence relates heavily to water source contamination. In the united states, G. lamblia has been found in both drinking and recreational water. Due to the high prevalence of giardiasis, G. lamblia is of significant interest in the clinical research community. However the pathogenic mechanisms are not completely understood. [See also Pathology].

G. lamblia is also significant in evolutionary biology. Due to its lack of mitochondria, G. lamblia is believed to be diverged from one of the earliest lineages of eukaryotes before the endosymbiotic relationship of mitochondria began (the kingdom name “Archezoa” has been proposed). However, this theory is currently under debate. Emerging proofs in genetics, for example, by comparison of the gene encoding valyl-tRNA synthetase (Hashimoto et al, 1998) and discovery of complex cellular machineries, (such as localized, mitochondria-like electron-transport machinery, (Lloyd, 2002)) suggest they may be more advanced organisms, who were once mitochondria-bearing but lost them ever since. Sequencing of the complete genome of G. lambdia is current in progress, but results so far have already provided much insight into its evolutionary history.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen