Difference between revisions of "Gluconobacter oxydans"

From MicrobeWiki, the student-edited microbiology resource
Jump to: navigation, search
Line 17: Line 17:
==Description and significance==
==Description and significance==
[[Image:Pic2.gif|frame|left|© DECHEMA e.V. 2004, Last update 2006-03-08]]
[[Image:Pic2.gif|frame|right|© DECHEMA e.V. 2004, Last update 2006-03-08]]
Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced.  Describe how and where it was isolated.
Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced.  Describe how and where it was isolated.

Revision as of 17:04, 3 May 2007

A Microbial Biorealm page on the genus Gluconobacter oxydans


Higher order taxa

Domain: Bacteria; Phylum: Proteobacteria; Class: Alphaproteobacteria; Order: Rhodospirillales; Family: Acetobacteraceae; Genus: Gluconobacter; Species: oxydans [Others may be used. Use NCBI link to find]


NCBI: Taxonomy


Description and significance

© DECHEMA e.V. 2004, Last update 2006-03-08

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them. Gluconobacter oxydans, previously known as Acetobacter suboxydans, are Gram-negative rod or oval shaped bacterium ranging from about 0.5 to 0.8mm x to 4.2mm. They tend to have a small genome size because of their limited metabolic abilities. These abilites include partially oxidizing carbohydrates and alcohols through the process of oxidative fermentation, and they can be used for sythesis of Vitamin C, D-gluconis acid and ketogluconic acids. G. oxydans are found in flowers, fruits, garden soil, alcoholic beverages, cider, and soft drinks because they are capable of growing strains in high concentrations of sugar solutions and low pH values (optimal pH for growth is 5.5-6.0.) Although they are able to grow in extreme conditions, its growth rate is slow and the concentration of mature cells are low. The importance of G. oxydan is its ability to incompletely oxidize carbon substrates such as D-sorbitol, glycerol, D-fructose, and D-glucose for the use in biotechnological instruments.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

The genome of Gluconobacter oxydans tend to be small in size, ranging about 2240 to 3787kb (Verma et al., 1997). Shapes can be ellipsoidal or rod-shaped with dimensions of 0.5 to 0.8x0.9 to 4.2mm. The total number of genes is 2664, the total number of all DNA molecules is 6, and the total size of all the DNA molecules is 2922384bp. The circular chromosome has a size of 2.7Mb and a total of 2743 reading frames. It contains four plasmids with sizes of 26.6kb, 14.5kb, 13.2kb, and 2.7kb, and a megaplasmid with a size of 163kb. Its G+C content is 61%. G. oxydan is an aerobe which has oxygen as a terminal electron acceptor. The highest growth rate occur at temperatures between 25 to 30 degrees C and it cannot withstand high temperatures above 37 degrees C. G. oxydans are interesting because they cause apples and pears to rot and they thrive in environments with high concentrations of sugar.

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules

oxydans has two membranes and no flagella and thus non-motile.


Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.


How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required


[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Lynn S Cheung and Kit Pogliano

Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreich, A., Gottschalk, G. and Deppenmeier, U. (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnol. 23(2): 195-200 (abstract).