HIV-1 Pre-Integration Complex

From MicrobeWiki, the student-edited microbiology resource


A key feature of the HIV-1 virus is its ability to integrate its genome into the genome of host cells. This process can lead to a latency and mitosis-independent replication of the virus. Since integration takes place in the nucleus, the virus must successfully cross the nuclear membrane. HIV-1 establishes the pre-integration complex (PIC) that is responsible for nuclear import. The PIC consists of the cDNA, integrase, matrix antigen (MA), and viral protein R (Vpr). MA and Vpr both contain nuclear localization signals (NLS) that are believed to be important for nuclear import. MA is recognized by importin-α and importin-β. While Vpr aids in nuclear import in a different pathway that increases viral infection. Moreover, a region of the cDNA has been shown to be necessary for PIC entry through the nuclear pore. Insight into the formation and mechanism of the PIC might provide a novel drug target for the treatment of HIV.

Matrix Antigens and Viral Protein R

The roles of MA and Vpr in nuclear import is a controversial topic. Nevertheless, two NLS have been found in the HIV-1 matrix protein that regulate nuclear import. One occurs in residues 24 through 31, 24GKKKYKLKH (NLS-1), and the other occurs in the residue 110 of the C-terminal, 110KSKKK (NLS-2). One study presented that NLS-1 was the dominant NSL in directing nuclear import. Mutations in of the two NLS by replacing the lysine with alanine resulted in the absence of nuclear import. Furthermore, mutation in NLS-2 did not abolish nuclear import but mutations in both NLS-1 and NLS-2 resulted in the failure of the mutants to enter the nucleus. Additionally, NLS-1 and NLS-2 mutants did were not able to replicate in macrophages, indicating that MA is important of macrophage infection. NLS-2 was shown to have a binding affinity for karyopherin α. Karyopherins are a group of key proteins in the transportation of molecules between the nucleus and the cytoplasm.


The cDNA in the PIC contains a DNA flap or the triple helical domain. The HIV-1 genome contains a central polypurine tract (cPPT) and central termination sequence (CTS) that results in the DNA flap during the synthesis of the positive-strand DNA by reverse transcriptase. Initiation of reverse transcription occurs at the cPPT. All lentiviruses contain two cis-acting sequences, a central polypurine tract (PPT) in the coding sequence for integrase and a PPT in the 3’region that is resistant to RNase H degradation. The 3’PPT functions as a primer for the positive strand synthesis. Initiation of reverse transcription occurs at both the cPPT and the 3’PPT, which leads a break in the center of the viral genome. Furthermore, reverse transcription terminates 100 nucleotides downstream of the cPPT in the CTS. At this region, the conformation of the CTS reduces the binding ability of reverse transcriptase and leads to termination. From these events, the DNA flap is generated from the 100 nucleotide overlap. Mutations in the cPPT and the CTS results in the impairment of HIV replication and the DNA flap. One study introduced extensive mutations in the cPPT and found that infectivity decreased in the mutants. And when the cPPT mutations were combined with CTS mutations, infectivity further decreased. However, disruptions in the cDNA flap formation does not completely abolish nuclear import since about 5-15% of these mutants exhibited nuclear import and infectivity. From these results, it is unclear whether the observed infectivity of the mutants is due to an incomplete DNA flap disruption or there exists a mechanism for DNA-flap independent nuclear import. One possibility for this mechanism is that smaller viral genomes are able to pass through the nuclear membrane without a central DNA flap.

The HIV genome is 9.7 kb and the nuclear pore has a maximum diameter of 26 nm. For the PIC to cross the nuclear membrane, the PIC must adopt an extreme conformation. One hypothesis have been proposed for the mechanism of DNA flap- dependent nuclear import. In this hypothesis, after the successful reverse transcription of the viral genome within the viral capsid and the docking of the reverse transcription complex (RTC) to the nuclear pore, RTC undergoes maturation into the PIC. Afterwards, the central DNA flap would translocate outside of the integral viral capsids. Without the large HIV capsid, the viral genome can enter the nuclear pore. In this model, mutants with the DNA flap would prevent the cDNA from translocating outside the viral capsid. Another model hypothesizes that the DNA flap constitutes a part of the PIC and integrase and is necessary for the recognition of the PIC by the nuclear pore. In the presence of cPPT mutants, the nuclear pore machinery would not recognize the PIC and nuclear import would not occur.

There is evidence that the viral capsid remains intact until the entire complex moves to the nuclear membrane. This means that reverse transcription occurs while the viral genome is within the viral capsid. In contrast, it has also been reported that the capsid proteins are associated with the viral genome in the cytoplasm, indicating that reverse transcription occurs in the cytoplasm. However, it is possible that the latter observation is due the damage to the capsid from the isolation protocol. Furthermore, the argument for reverse transcription occurring inside the viral capsid is more compelling since the reverse transcriptase enzyme cannot carry out its functions in the high dilution environment of the cytoplasm.

Topic 3

Include some current research in each topic, with at least one figure showing data.


Overall paper length should be 2,000 (Draft 1), 3,000 words (Final), with at least 3 figures.


[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Joan Slonczewski for BIOL 375 Microbiology, 2014, Kenyon College.