Help:Contents: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
===Classification:===
<h1>Welcome to MicrobeWiki</h1>
'''Higher order taxa: Bacteria (Domain): Deinococcus-Thermus (Phylum):  Deinococci (Class): Thermales (Order): Thermacaea (Family): Thermus (Genus):  Thermophilus (Species)''' 
MicrobeWiki is a part of the Kenyon College Department of Biology. The site is edited and maintained by the department and users like yourself.


===Strain:===
<h1>Logging In</h1>
(HB27, HB8)


<h1>Cell Structure:</h1>
<h3>Why is there a required login?</h3>
{| border="1"
To help keep the site running smoothly and accurately logining in is required to edit any page. If you would like to contribute to the usefulness and accuracy of this wiki please email [mailto:slonczewski@kenyon.edu Dr. Slonczewski] and request a login ID and password.
!Thermus Thermophilus is a Gram-negative bacterium that was isolated in 1971, Japan. They spawn in thermal spring ranging from 50-82C. The biological machines from these organisms have a higher stability than other organisms due to the environment that they have to live in. In general, thermophiles are anaerobes that can live in hot environment with low oxygen solubility due to the temperature with the exception of thermus, they are aerobic chemorganotroph. Thermus Thermophilus contains two strains, HB8 and HB27; both were found in Japan’s thermal environment with optimum environment 68C and the pH 7.0. The HB8 strain can live in either anaerobe and aerobe; where as the HB27 can only strive in aerobe environment. HB8 survive anaerobeically in the presence of nitrate through nitrate reductase production. However the HB27 was unable to growth in the same environment as the HB8 due to the inability to produce nitrate reductase.
!Thermus Thermophilus [[Image:T._Thermophilus_pic.jpg‎|thumb|micrograph showing
T. thermophilus cells. A curtesy from MPIMG|200px|right]]
|-
|}


<h1>Genome Structure:</h1>
<h3>Why can't I create my own login?</h3>
The Thermus Thermophilus bacterium contain 2127482 base pair where 1476627 base pair (69.40%) are G+C content. The high percentage of G+C content allow the bacterium to strive in extreme thermo environment where it's own genetic information would not be denatured by the surrounding environment. In addition, it contained a total of 2210 protein encoding genes and 53 RNA genes. ('''2''')
In order to keep track of the information entering our site we create the accounts and email them to you. If you would like a login please email [mailto:slonczewski@kenyon.edu Dr. Slonczewski].


<h1>Cell Structure:</h1>
<h3>I have a login but it won't work</h3>
The username and password are case sensitive. Make sure that both are typed correctly. If the problem persists contact <!-- insert information here --> for further assistance.


<h3>Cell Structure:</h3>
<h1>Editing</h1>
{| border="1"
!Like any other Gram negative bacteria, Thermus Thermophilus composed of an outer membrane, mainly phospholipids and lipopolysaccharides, which made it ineffective to hold the crystal violet color during gram stain; a thin layer of peptidoglycan covering the plasma membrane and a cytoplasmic membrane. The peptidoglycan (murein) is responsible for the cell’s rigid structure. There are a total of 29 muropeptides composed of more than 85% of the total murein in the organism. Scientists dissected the composition of the Thermus Thermophilus murein and found the presence of Ala, Glu, Gly, Orn, N-acetyl glucosamine, and N-acetylmuramic. In addition to the amino acid and sugar mentioned above, T. Thermophilus also contains phenyl acetic acid at the N terminal of Glysine. The presence of phenyl acetic acid in the muropeptides is 23.7% relative to the total muropeptides. The process of how and why the phenyl acetic acid incorporated into the muropeptides is still unknown but scientists think that the aromatic phenyl ring could be facilitating the interaction between the noncovalent and hydrophobic molecules from the surrounding environment. Other hypothesis also arises linking the phenyl acetic acid to the structure of penicillin.('''1''')!! Modified Muropeptide & Penicillin[[Image:Modified_Muropeptide_and_penicillin.jpg‎|frame|none|]]
|-
|}


<h1>Ecology</h1>
<h3>Why is a login required to edit?</h3>
{| border="1"
Editing pages has been restricted to users only. However, everyone is invited to read our research material and use it for educational purposes.
!Most Thermus Thermophilus can be found in various geothermal environment through out the earth such as hot spring, undersea volcanic thermal vents. Thermophiles can live in acidic condition as low as pH 3.4 to very basic alkaline environment such as pH 9. The ability that allows them to survive these environments is all encoded in their gene and protein structure.!! Thermus Environment [[Image:Grand_prismatic_spring.jpg|frame|none|]]
<h3>Leaving editing notes</h3>
|-
Leaving notes on a page that has been edited will help others who edit the page after you understand what was meant or what information you were lacking. Leaving a note or comment is fairly easy, it should look like this <nowiki> <!--</nowiki> ''place note here''<nowiki> --></nowiki> when leaving a note leave your user name and the date you edited that part of the page <nowiki><!-- </nowiki>''place note here'' DrewT, 6.1.06<nowiki> --></nowiki>.
|}


<h1>Application to Biotechnology:</h1>
<h3>Images</h3>
The Thermus Thermosphilus’ enzyme is very stable and is the major topic for biotechnology. All of the enzymes display a much higher stability and resistance to denaturation from heat and chemical reagent than the mesophilic homologous, which make it a very appealing for industrial process. One of the enzymes from the thermus species had already been applied in scientific research and industrial application is the rTtH DNA polymerase, use in PCR. The rTtH DNA polymerase has an optimum temperature of 70-80C and in the presence of Magnesium 2+, it does show the effect of reverse transcriptase.('''7''')
To upload an image to MicrobeWiki for use in a page, find the toolbox at the lower left of the page and click on Upload File.  Then follow the instructions to upload your image to microbewiki. Using an image in a page works the same way as in wikipedia, as described at [http://en.wikipedia.org/wiki/Wikipedia:Extended_image_syntax Wikipedia:Extended image syntax]


Recent studied showed that T. Thermophilus DNA mismatch repair mechanism (MutS gene) can be transfer to other bacteria (E.coli) and still function normally. The MutS gene then undergoes mass production in the E.coli bacteria and purified. Nearly half of the MutS gene was stable in pH of 1.5 to as basic as 12 at room temperature and still stable upto as high as 80C. ('''5''')
<h3>Templates</h3>
All pages on MicrobeWiki should be based on either the [[Genus]] page or a [[List of class template pages | class template page]]. At the top of each page, there should be an appropriate tagline from the [http://microbewiki.kenyon.edu/index.php?title=Special%3AAllpages&from=&namespace=10 Templates] namespace. Include these taglines in a page by typing the name of the tag surrounded by two pairs of braces ({}).


<h1>Current Research:</h1>
<h3>Formatting</h3>
Many researches on thermophilic organisms are currently taking place today. One of the researches was based on the production of polyester from the Thermus Thermophilus bacterium to make Polyhydroxylalkanoate (PHA) by the University of Greece. The substrate that was used as the carbon source to grow the bacterium was sodium gluconate or sodium octanoate. The result yielded PHA synthesis from 30-40% of the cellular dry weight('''3'''). Other researchers tried to synthesize vitamin B12 from the Uroporphyrinogen-III C-methyltransferase, ''a multifunctional protein that responsible for two of the eight S-adenosyl-methionine-dependent methylations of the corrin ring during vitamin B(12) synthesis.''('''4''')
General formatting can be done by using the tool bar above the editing box, but more advanced features take special characters. To find out more, read MediaWiki's [https://www.mediawiki.org/wiki/Help:Formatting Help:Formatting] page.


<h1>Reference:</h1>
<H3>Tables</h3>
1. JOSE CARLOS QUINTELA, ERNST P.,GUNTER A.,VICENTE A.,MIGUEL A. DE P. "Structure of Peptidoglycan from Thermus thermophilus HB8". JOURNAL OF BACTERIOLOGY, 1995, Vol. 177. p. 4947–4962. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=177270&blobtype=pdf
Setting up tables is more dificult in a wiki environment, we suggest that you read Wikipedia's [http://en.wikipedia.org/wiki/Help:Table Help:Table] for that information (note there is no button for inserting tables in MicrobeWiki).


2. Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ. "The genome sequence of the extreme thermophile Thermus thermophilus". Nat Biotechnol. 2004 May, Vol 22. p.547-53. http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15064768&dopt=AbstractPlus&holding=f1000%2Cf1000m%2Cisrctn
<h3>Converting Microbial Biorealm pages to wiki</h3>
 
See [[Help:How to convert a Dreamweaver page to wiki]].
3. Pantazaki AA, Tambaka MG, Langlois V, Guerin P, Kyriakidis DA. "Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase". Mol Cell Biochem. 2003 Dec;254(1-2):173-83. http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=14674696&dopt=AbstractPlus&holding=f1000%2Cf1000m%2Cisrctn
 
4.Rehse PH, Kitao T, Tahirov TH. "Structure of a closed-form uroporphyrinogen-III C-methyltransferase from Thermus thermophilus". Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):913-9. Epub 2005 Jun 24. http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=15983414&query_hl=1
 
5. S Takamatsu, R Kato and S Kuramitsu. "Mismatch DNA recognition protein from an extremely thermophilic bacterium, Thermus thermophilus". Nucleic Acids Research, Vol 24, Issue 4 640-647. http://nar.oxfordjournals.org/cgi/content/abstract/24/4/640
 
6. François J. Franceschi. Max-Planck-Institute for Molecular Genetics http://www.molgen.mpg.de/~ag_ribo/ag_franceschi/franceschi-projects-30S.html
 
7. Mohamed N, Elfaitouri A, Fohlman J, Friman G, Blomberg J. A sensitive and quantitative single-tube real-time reverse transcriptase-PCR for detection of enteroviral RNA. J Clin Virol. 2004 Jun;30(2):150-6. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=15125871&ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

Latest revision as of 19:45, 10 August 2015

Welcome to MicrobeWiki

MicrobeWiki is a part of the Kenyon College Department of Biology. The site is edited and maintained by the department and users like yourself.

Logging In

Why is there a required login?

To help keep the site running smoothly and accurately logining in is required to edit any page. If you would like to contribute to the usefulness and accuracy of this wiki please email Dr. Slonczewski and request a login ID and password.

Why can't I create my own login?

In order to keep track of the information entering our site we create the accounts and email them to you. If you would like a login please email Dr. Slonczewski.

I have a login but it won't work

The username and password are case sensitive. Make sure that both are typed correctly. If the problem persists contact for further assistance.

Editing

Why is a login required to edit?

Editing pages has been restricted to users only. However, everyone is invited to read our research material and use it for educational purposes.

Leaving editing notes

Leaving notes on a page that has been edited will help others who edit the page after you understand what was meant or what information you were lacking. Leaving a note or comment is fairly easy, it should look like this <!-- place note here --> when leaving a note leave your user name and the date you edited that part of the page <!-- place note here DrewT, 6.1.06 -->.

Images

To upload an image to MicrobeWiki for use in a page, find the toolbox at the lower left of the page and click on Upload File. Then follow the instructions to upload your image to microbewiki. Using an image in a page works the same way as in wikipedia, as described at Wikipedia:Extended image syntax

Templates

All pages on MicrobeWiki should be based on either the Genus page or a class template page. At the top of each page, there should be an appropriate tagline from the Templates namespace. Include these taglines in a page by typing the name of the tag surrounded by two pairs of braces ({}).

Formatting

General formatting can be done by using the tool bar above the editing box, but more advanced features take special characters. To find out more, read MediaWiki's Help:Formatting page.

Tables

Setting up tables is more dificult in a wiki environment, we suggest that you read Wikipedia's Help:Table for that information (note there is no button for inserting tables in MicrobeWiki).

Converting Microbial Biorealm pages to wiki

See Help:How to convert a Dreamweaver page to wiki.