Lactococcus lactis

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Lactococcus lactis


Higher order taxa

Bacteria, Firmicutes, Bacilli, Lactobacillales, Streptococcacaeae, Lactococcus


NCBI: Taxonomy

Lactococcus lactis

Description and significance

Lactococcus lactis is a rod shaped, Gram-positive bacteria used widely for industrial production of fermented dairy products like milk, cheese, and yogurt. These are important food supply for many people, so extensive research has been done on the microorganism’s metabolic pathway to increase its efficiency for dairy production. Due to its important application, simple metabolism and limited biosynthetic capabilities, its genome is sequenced to help researchers understand genes that are responsible for its fermentation pathway. Furthermore, scientists study DNA recombination to improve its survival and resistance to antibiotics and to manipulate its metabolic pathways to be better used for industrial production. (10)

Aside from its high use in industrial application, it can also be found in the wild on plants and some body parts of cows. It is believed that in nature, L. lactis stays dormant on plant surface awaiting to be ingested along with the plant into animal gastrointestinal tract, where it becomes active and multiplies intensely (1). Not only it is important in dairy production, it also has potential of use as oral vaccine, foreign protein production and metabolite through genetic engineering to manipulate L. lactis in researchers’ favor (2).

Lactococcus lactis has two subspecies with few phenotype and genotype difference, Lactococcus lactis subsp. lactis and subsp. cremoris, where subsp lactis is preferred for making soft cheese while subsp. cremoris is for hard cheese (1). These organisms were originally classified under the genus Streptococcus, but in 1985, it was assigned to the current genus (3). Recently, one method of distinguishing between the two subspecies was announced. Observation of glutamate decarboxylase (GAD) can be found in the subspecie lactis, but not in subspecie cremoris. “GAD catalyzes the irreversible decarboxylation of glutamate to -aminobutyric acid” with the glutamate-GABA antiporter (GABA) (4). The gene that encodes GAD in L. lactis subsp. cremoris is inactivated by a frameshift mutation resulting in a nonfunctioning protein.

Genome structure

The genome of L. lactis is a circular chromosome with 2,365,589 base pair, where 86% of the genome code for protein, 1.4% for RNA, and 12.6% for noncoding region. The whole genome encodes 2310 proteins, which include 293 protein-coding genes and 43 insertion sequence (IS) elements. There are 64.2% of the genes encodes for known functional proteins and 20.1% of the genes for known protein with unknown function. The remaining 15.7% of the genes are unidentified proteins that may be unique to the Lactococcus. The genome codes for DNA replication initiation genes in L. lactis includes dnaB, dnaD, and dnaI; in addition, there are two DNA polymerase III encoded by the polC and dnaE genome. Furthermore, there are around 30 genes consisted for transcription and only 3 sigma factor involved in reading the DNA. Translation is more intricate including 119 genes while 27 genes are utilized for protein fixation after translation. (1)

Cell structure and metabolism

The metabolic pathway of L. lactis can function through aerobic and anaerobic reactions. It consists of 621 reactions and 509 metabolites and requires minimally glucose, arginine, methionine, glutamate and valine for growth. The main metabolism of L. lactis is through the anaerobic pathway, fermentation, which produces lactic acid from the available carbohydrates and is used for industrial food production. The carbon sources that L. lactis draws from include fructose, galactose, glucosamine, glucose, lactose, maltose, mannitol, mannose, ribose, sucrose and trehalose. However, the growth rate of the cell with the intake of each carbon source is different. Growth rate on glucose, mannose, galactose, sucrose, lactose and glucosamine are the same, while fructose and mannitol growth rates are lower. (5)

Under anaerobic reaction, glycolysis breaks down extracellular carbohydrates to pyruvate, then convert pyruvate to lactic acid with the main enzyme ldh, lactate dehydrogenase (6). Lactate will guide protons out with membrane protein creating the membrane potential necessary for energy production (1). NADH, the cofactor for the lactate dehydrogenase is regenerated into NAD+ to be reused for glycolysis. This mechanism allows L. lactis to survive without the genome encoded for citric cycle and gluconeogenesis.

Besides from the anaerobic pathway, L. lactis has an aerobic system to assist in its development. Normally, the uptake of oxygen would affect the fermentation process or even interferes with oxygen reactive substances. However under low oxygen consumption, aerobic pathway is limited due to the low recycle rate of NAD from NADH oxidase. These damages can be fixed when cells are grown with oxygen and heme source. Cells increase their growth, resistance to oxidation, and improve survival at low temperature. Furthermore, it has recently been discovered a functional electron transfer chain on the L lactis that support the membrane potential. Along with heme source, the presence of membrane bound NADH dehydrogenase oxidizes NADH and increases the cell growth and production of proteins and vitamins. (7)


Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.


How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required


[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen and Kit Pogliano