Mammoth Cave

From MicrobeWiki, the student-edited microbiology resource
Revision as of 22:29, 2 June 2020 by Mselensky (talk | contribs)

Overview

By Matt Selensky

Caves around the world harbor myriad microbiota that thrive in these dark, energy-starved subsurface environments. Located in central Kentucky, Mammoth Cave is the longest known cave system on Earth, encompassing over 580 km of mapped passages[1]. Although a cave-wide assessment of the its microbial ecology has never been performed, site-specific studies have elucidated intriguing characteristics of some Mammoth Cave microbes. Microbes found in the karstic sediments beneath two shallow water pools within Mammoth Cave were inferred to exhibit high diversity and total cell densities, reaching 1.4 × 107 cells per g wet sediment[2]. Densities and activity of the chemolithoautotrophic Nitrobacter sp. were determined to be significantly higher in the caves relative to the surface. These nitrifying bacteria have been suggested to play a role in the formation of widespread saltpeter (KNO3) deposits found in the cave by oxidizing bat guano N or other surface-sourced N transported underground[3]. A seep rich in hydrocarbons and sulfide in Marianne’s Pass brings additional energy sources into the cave for microorganisms[4]. No published work appears to be available that describes sulfur-oxidizing bacteria in Mammoth Cave. However, a 16S rRNA gene clone survey of nearby Parker Cave demonstrates the widespread abundance of Thiothrix sp. living in the underground and euxinic Sulphur River[5]. Caves untouched by humans inherently lack light; however, artificial lamps placed in “show cave” sections of Mammoth sustain photosynthetic algal and cyanobacterial populations[1]. Such microorganisms are otherwise thought to be transient, washing into the cave either after heavy rains or via riverine input[6]. Fungi commonly colonize and decompose organic matter such as rat fecal pellets or dead crickets that occasionally litter the cave passages. The most notorious fungus that is found in Mammoth Cave is Pseudogymnoascus destructans, the causative agent of white nose syndrome in bats [6]. Other eukaryotes that are found in the cave include amoebas and other “protists” that tend to colonizing standing pools of water [6]. It is becoming clearer that the microbial communities of Mammoth and other caves are greatly involved in the N, S, and C cycles. We are only just beginning to gain a system-level understanding of shallow subsurface microbial ecology.

Geology of Mammoth Cave

A cross section of the Mammoth Cave region, demonstrating the karst nature of the area. From Palmer (2017)[7].

Microbial Ecology of Mammoth Cave

Expansion topic 1-3

Key Microbial Players

Conclusion

References

Authored for Earth 373 Microbial Ecology, taught by Magdalena Osburn, 2020, NU Earth Page.