Methanococcoides burtonii

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Methanococcoides burtonii

Classification

Higher order taxa

cellular organisms; Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanococcoides.(5,9)

Species

Methanococcoides burtonii

Description and significance

M. burtonii is an extremophile that love life extremely cold. They live at the bottom of Ace Lake in Antarctica, where there is no oxygen and the average temperature is a brutal 33 degrees Fahrenheit. (7) The in situ temperature is annually 1 to 2°C (1). It has an optimal growth temperature of 23°C and an upper growth temperature limit of approximately 28°C (1). One of the most significant findings is that this microbe has flexible proteins, which allow their cells to survive cold temperatures and carry out basic cell functions under extreme conditions. These proteins are more rigid and stable in bacteria that live at higher temperatures.(7)

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen