Difference between revisions of "Methanococcus jannaschii"

From MicrobeWiki, the student-edited microbiology resource
Line 30: Line 30:
  
 
In 1982, ''M. jannaschii'' was first isolated in the East Pacific Rise, near the western coast of Mexico. The organism was found from a sample sediment taken from a 2600 m deep “white smoker” chimney. Its extreme habitat of temperature between 48oC-94oC, pressure at 200atm, a pH of 5.2-7, and 1.0-5.0% NaCl leads experts to a conclusion that these organisms must have modified and unique adaptations for optimal growth at high temperature, high pressure, and also moderate salinity level (Tsoka et. al, 2003). Moreover, cellular structure of ''M. jannaschii'' revealed that they are irregular cocci (have irregular spherical shape). Their motility is by utilizing polar bundles of flagella (Tsoka et. al., 2003). Characteristic to any organism that belongs to the kingdom Archaea, ''M. jannaschii'' lacks cell wall; however, they do possess cell envelope that is made up of cytoplasmic membrane and a protein surface layer (S-layer) (Sleytr et. al., 2007).
 
In 1982, ''M. jannaschii'' was first isolated in the East Pacific Rise, near the western coast of Mexico. The organism was found from a sample sediment taken from a 2600 m deep “white smoker” chimney. Its extreme habitat of temperature between 48oC-94oC, pressure at 200atm, a pH of 5.2-7, and 1.0-5.0% NaCl leads experts to a conclusion that these organisms must have modified and unique adaptations for optimal growth at high temperature, high pressure, and also moderate salinity level (Tsoka et. al, 2003). Moreover, cellular structure of ''M. jannaschii'' revealed that they are irregular cocci (have irregular spherical shape). Their motility is by utilizing polar bundles of flagella (Tsoka et. al., 2003). Characteristic to any organism that belongs to the kingdom Archaea, ''M. jannaschii'' lacks cell wall; however, they do possess cell envelope that is made up of cytoplasmic membrane and a protein surface layer (S-layer) (Sleytr et. al., 2007).
 +
 +
''Methanococcus jannaschii'' belongs to a specific group called methanogens, or methane producers (Tumbula and Whitman, 1999). Methanogens are physiologically specialized to undergo fueling reactions to produce methane as the end product (Reeve, 1992). They are ultimately autotropic single-celled organisms. Being an autotropic organism, ''M. jannaschii'' is strictly anaerobic and uses only carbon dioxide as its sole carbon source. Its main pathway for energy production is through methanogenesis, a process during which hydrogen is used as an energy source to reduce carbon dioxide to methane (Zhu et. al., 2004). Methanogens are extremely important to anaerobic environments because they convert organic compounds into methane, which then rises into the aerobic environment. By doing so, these organisms provide a pathway for compounds that exist in anaerobic environment to escape into the atmosphere, where it acts as a natural gas resource (Reeve, 1992).
 +
 +
 +
''M. jannaschii'' became the first organism in the archaea to have its complete genome sequenced (Bult, C. J. et. al, 1996). Its genomic structure, along with the unique lifestyle, has gradually provided insights into understanding the organism’s adaptations to its extreme habitat. More importantly, the knowledge gained from studying the metabolic processes, the enzymes, and the proteins that are specifically involved in these processes will lead to deeper understanding of the evolution of Archaea. In studying the interaction between ''M. jannaschii'' and its environment, many evolution questions about our environments could potentially be answered.
  
 
==Genome structure==
 
==Genome structure==

Revision as of 15:53, 5 June 2007

A Microbial Biorealm page on the genus Methanococcus jannaschii

Classification

Higher order taxa

- Superkingdom: Archaea

- Phylum: Euryarchaeota

- Class: Methanococci

- Order: Methanococcales

- Family: Methanocaldococcaceae

- Genus: Methanocaldococcus (syn: Methanococcus)

Species

Genus species - Methanocaldococcus jannaschii

- synonym: Methanococcus jannaschii

Description and significance

Methanococcus jannaschii is an autotropic hyperthermophillic organism that belongs to the kingdom of Archaea. They were found to live in extreme environments such as hypothermal vents at the bottom of the oceans in which water reaches boiling temperature or pressure is extremely high (Bult, C.J. et. al., 1996). The evolutionary of these organisms and the biological mechanisms that they use to not only survive but also thrive in such extreme environments are of great interest to current researches.


In 1982, M. jannaschii was first isolated in the East Pacific Rise, near the western coast of Mexico. The organism was found from a sample sediment taken from a 2600 m deep “white smoker” chimney. Its extreme habitat of temperature between 48oC-94oC, pressure at 200atm, a pH of 5.2-7, and 1.0-5.0% NaCl leads experts to a conclusion that these organisms must have modified and unique adaptations for optimal growth at high temperature, high pressure, and also moderate salinity level (Tsoka et. al, 2003). Moreover, cellular structure of M. jannaschii revealed that they are irregular cocci (have irregular spherical shape). Their motility is by utilizing polar bundles of flagella (Tsoka et. al., 2003). Characteristic to any organism that belongs to the kingdom Archaea, M. jannaschii lacks cell wall; however, they do possess cell envelope that is made up of cytoplasmic membrane and a protein surface layer (S-layer) (Sleytr et. al., 2007).

Methanococcus jannaschii belongs to a specific group called methanogens, or methane producers (Tumbula and Whitman, 1999). Methanogens are physiologically specialized to undergo fueling reactions to produce methane as the end product (Reeve, 1992). They are ultimately autotropic single-celled organisms. Being an autotropic organism, M. jannaschii is strictly anaerobic and uses only carbon dioxide as its sole carbon source. Its main pathway for energy production is through methanogenesis, a process during which hydrogen is used as an energy source to reduce carbon dioxide to methane (Zhu et. al., 2004). Methanogens are extremely important to anaerobic environments because they convert organic compounds into methane, which then rises into the aerobic environment. By doing so, these organisms provide a pathway for compounds that exist in anaerobic environment to escape into the atmosphere, where it acts as a natural gas resource (Reeve, 1992).


M. jannaschii became the first organism in the archaea to have its complete genome sequenced (Bult, C. J. et. al, 1996). Its genomic structure, along with the unique lifestyle, has gradually provided insights into understanding the organism’s adaptations to its extreme habitat. More importantly, the knowledge gained from studying the metabolic processes, the enzymes, and the proteins that are specifically involved in these processes will lead to deeper understanding of the evolution of Archaea. In studying the interaction between M. jannaschii and its environment, many evolution questions about our environments could potentially be answered.

Genome structure

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by Tina Nguyen Tran of Rachel Larsen and Kit Pogliano