Methylacidiphilum fumariolicum: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
Line 37: Line 37:


==Metabolism==
==Metabolism==
Nitrogen Fixation
Methylacidiphilum fumariolicum has been found to fix nitrogen at low oxygen concentrations (less than 2% v/v) in chemostat cultures  based on the following equation: 
The optimal oxygen concentration for Methylacidiphilum fumariolicum nitorgen fixation is 0.5% v/v.  Studies show that this species poses the essential genes for nitrogen fixation (The genes encoding the structural protein (nifH, nifD and nifK) and the genes encoding cofactor biosynthesis (nifE,nifN and nifX)).  Methylacidiphilum fumariolicum was also found to be more oxygen sensitive than most other proteobacterial methanotrophs.  This could be due to the fact that during nitrogen fixation there was found to be nitrogenase activity, which is known to be oxygen sensitive.


==Ecology==
==Ecology==

Revision as of 20:11, 7 April 2014

MMG425 Kelsey Sharples Keely Chandler

Classification


Methylacidiphilum fumariolicum


Domain: Bacteria

Phylum: Verrucomicrobia

Class:

Order: Methylacidiphilales

Family: Methylacidiphilaceae

Genus: Methylacidiphilum

Species: Methylacidiphilum fumariolicum

Description and Significance

Methylacidiphilum fumariolicum is an extremely acidophilic methanotrophic microbe first discovered in 2007 in volcanic pools near Naples, Italy by Huub Op den Camp and other scientists. This microbe endures very hot temperatures and mud that is extremely acidic. After studying the mudpot in which the microbe lived, it was found that M. fumariolicum is strictly dependent on the presence of rare earth metals such as lanthanides. It is theorized that lanthanides provide superior catalytic properties to a key enzyme for both methanotrophs and methylotrophs. When the bacteria’s enzyme methanol dehydrogenase was analyzed, scientist found traces of whichever rare earth element that they had added, indicating storing of the elements by the enzyme. [1]

Genome Structure

Genome Details [2] :

The genome of Methylacidiphilum fumariolicum is 2.36 Mbp in size.

GC content = 40.9%

2,283 protein encoding genes

Biosynthetic pathways and tRNAs for all 20 amino acids were present

Metabolism

Nitrogen Fixation

Methylacidiphilum fumariolicum has been found to fix nitrogen at low oxygen concentrations (less than 2% v/v) in chemostat cultures based on the following equation:


The optimal oxygen concentration for Methylacidiphilum fumariolicum nitorgen fixation is 0.5% v/v. Studies show that this species poses the essential genes for nitrogen fixation (The genes encoding the structural protein (nifH, nifD and nifK) and the genes encoding cofactor biosynthesis (nifE,nifN and nifX)). Methylacidiphilum fumariolicum was also found to be more oxygen sensitive than most other proteobacterial methanotrophs. This could be due to the fact that during nitrogen fixation there was found to be nitrogenase activity, which is known to be oxygen sensitive.

Ecology

References

[1] Pol, A., T. Barends, A. Dietl, A. Khadem, J. Eygensteyn, M. Jetten, and H. Op den Camp. "Rare Earth Metals Are Essential for Methanotrophic Life in Volcanic Mudpots." Environmental Microbiology (2013): N/a. Print.

[2] Khadem, A., A. Wieczorek, A. Pol, S. Vuilleumier, H. Harhangi, P. Dunfield, M. Kalyuzhnaya, J. Murrell, K. Francoijs, H. Stunnenberg, L. Stein, A. Dispirito, J. Semrau, A. Lajus, C. Medigue, M. Klotz, M. Jetten, and H. Op Den Camp. "Draft Genome Sequence of the Volcano-Inhabiting Thermoacidophilic Methanotroph Methylacidiphilum Fumariolicum Strain SolV." Journal of Bacteriology 194.14 (2012): 3729-730. Print.