Difference between revisions of "Nitrobacter hamburgensis"

From MicrobeWiki, the student-edited microbiology resource
Jump to: navigation, search
(Removing all content from page)
Line 1: Line 1:
Classification
 
  
Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae; Nitrobacter; Nitrobacter hamburgensis
 
 
 
Description and significance
 
 
Nitrobacter hamburgensis, gram negative bacteria, was isolated from soil of the Old Botanic Garden in Hamburg and of a corn field in Yucatan.  The main types of environments they inhabit are soil, building sandstone, and sewage sludge.  Its cells are 0.5-0.8 x 1.2-2.0 m in size.  They are pleomorphic; mostly pear-shaped and motile via one subpolar to lateral flagellum.  Intracytoplasmic membranes appear as caps of flattened vesicles or membrane vesicles in the central region of the cell.  The bacteria have an enzyme capable of oxidizing nitrite.  This is why it is important to sequence the genome of N. hamburgensis.
 
 
 
Genome structure
 
 
There is one circular DNA chromosome and three circular DNA plasmids.  The chromosome has 4,406,967 nucleotides.  Plasmid 1 has 294,829 nucleotides, 2 has 188,318 nucleotides, and 3 has 121,408 nucleotides.
 
 
 
Cell structure and metabolism
 
 
N. hamburgensis gains energy from oxidation of nitrite to nitrate via the enzyme nitrite oxidoreductase (NOR). It grows best mixotrophically with a doubling time of 10 hours to 18 hours.  Its growth rate under heterotrophic conditions is slower than under mixotrophic conditions, but higher than under lithoautotrophic conditions.
 
 
 
Application to Biotechnology
 
 
This organism produces nitrite oxidoreductase used for oxidizing nitrite to nitrate.  From the redox reaction; the organism gains energy.
 
 
 
References
 
 
Jens Aamand, Thomas Ahl, and Eva Spieck. 1996. "Monoclonal Antibodies Recognizing Nitirite Oxidoreductase fo Nitrobacter hamburgensis, N. winogradskyi, and N. vulgaris." Applied and Environmental Microbiology, vol. 67, no. 7. (2352-5)
 
 
E. Bock et al. 1983. “New facultative lithoautotrophic nitrite-oxidizing bacteria.” Archives of Microbiology, vol. 136, no.4. (281-284)
 
 
Franco-Rivera A, Paniaqua-Michel S, Zamora-Castro J. 2007.  “Characterization and performance of constructed nitrifying biofilms during nitrogen bioremediation of a wastewater effluent.” Journal of industrial microbiology and biotechnology, vol. 34, no. 4. (279-287)
 
 
 
Edited by Rashonda Butler of UC San Diego, student of Rachel Larsen.
 
 
Retrieved from "http://microbewiki.kenyon.edu/index.php
 

Revision as of 21:42, 30 April 2007