Pathology of Mycoplasma fermentans: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 27: Line 27:
M. fermentans grows well at 37 degrees Celsius (2). This means that M. fermentans can incubate and grow well in the human body. Specifically, M. fermentans is most commonly found that in the genitourinary and respiratory tracts of humans (2).
M. fermentans grows well at 37 degrees Celsius (2). This means that M. fermentans can incubate and grow well in the human body. Specifically, M. fermentans is most commonly found that in the genitourinary and respiratory tracts of humans (2).


=4. Cell structure=
=4. Mode of infection=
Interesting features of cell structure. Can be combined with “metabolic processes”
Mycoplasma fermentans is a non-motile bacterium that can adhere to, internalize into, and thus infect host cells using a surface protein and a protease (3). As discussed previously, M. fermentans is also more likely to infect immunocompromised host cells than cells with normal immune function because it is an opportunistic bacterium, as discussed previously. Yavlovich et al studied how M. fermentans specifically binds and invades to HeLa cells (3), a cell line of immunocompromised cervical cancer cells conserved from the 1950s for research purposes (15). Host cells can contain surface proteins called plasminogen, and M. fermentans contains receptor sites to which plasminogen binds (3). The binding of M. fermentans to these host cells enhances the conversion of plasminogen to plasmin by the urokinase-type plasminogen activator (uPA) (3). M. fermentans bound to plasminogen in the presence of uPA was able to invade HeLa cells, while M. fermentans without uPA was not (3). Thus, the adherence and invasion of M. fermentans to HeLa cells is dependent upon the plasminogen binding in the presence of uPA (3).
 
Additional factors that increase the internalization of M. fermentans into host cells are lipid raft networks containing cholesterol in host cell membranes, and the presence of divalent cations such as Mg2+ and Ca2+  in the environment, while factors that decreases the ability of M. fermentans to invade host cells are environmental temperatures lower than 37°C (the human body temperature) and environments of high osmolarity (3).
 
=5. Metabolic processes=
=5. Metabolic processes=
Describe important sources of energy, electrons, and carbon (i.e. trophy) for the organism/organisms you are focusing on, as well as important molecules it/they synthesize(s).
Describe important sources of energy, electrons, and carbon (i.e. trophy) for the organism/organisms you are focusing on, as well as important molecules it/they synthesize(s).

Revision as of 15:49, 11 December 2017

This student page has not been curated.

1. Classification

a. Higher order taxa

Bacteria (Domain), Terrabacteria group (Kingdom), Tenericutes (Phylum), Mollicutes (Class), Mycoplasmatales (Order), Mycoplasmataceae (Family), Mycoplasma (Genus), fermentans (Species) (1)

b. Species

Mycoplasma fermentans

2. Description and significance

a. Description

Mycoplasma fermentans is a Gram-negative (2) non-motile (3), and cell wall-less bacterium (4) found in humans (2).

M. fermentans is a co-infector in immunocompromised individuals and acts as an opportunistic pathogen; that is, M.fermentans will only infect host cells in a person whose immune system is already weakened by another preexisting infection.

By using and/or sequencing the genomes of M64 (2), JER (4), and PG18 (5) strains of M. fermentans, and identifying common environments in which M. fermentans have been found, researchers have been able to identify the genome structure, cell structure, metabolic processes, and ecology of these strains of the bacterium. The strains of this bacterium are highly heterogenous, and thus, the information provided about M64, JER, and PG18 can not necessarily extend to all strains of M. fermentans (6). These particular strains are three that have been sequenced in current research. M64 and JER strains were isolated from non-immunocompromised individuals, whereas PG18 was isolated from an immunocompromised patient with arthritis (2-5). M64 and JER strains contained large amounts of genomic content that allow them to become pathogenetic (2, 4), yet these strains would not have been pathogenetic in the samples from which they were isolated, because they were from individuals with normal immune function.

b.Significance to Human Society

M. fermentans carries pathogenic characteristics which negatively affect humans, specifically immunocompromised individuals, and has been shown to become resistant to certain antibiotics (3, 4, 7-9). M. fermentans has the ability to act as a co-infector in immunodeficiency disorders, such as in HIV/AIDS, Amyotrophic Lateral Sclerosis, and rheumatoid arthritis (5; 10-12). M. fermentans is capable of becoming resistant to specific types of antibiotics, such as macrolides and fluoroquinolones (8). M.fermentans infects host cells by adhering to cell membrane surface components, leading to internalization (3). Furthermore, the ability of M. fermentans to adhere to host cells increases in immunocompromised human cells, leading to cell death (3).

3. Key Pathogenic Characteristics

a. Genome Structure

The M64 strain of M. fermentans contains a high density of transposable elements (2). These elements play a large role in recombination and mutation. The genome of the JER strain of M. fermentans consists of proteins involved in replication and recombination (4). Thus, the genome structure of different strains of M. fermentans allows these strains of bacteria to replicate, mutate, and participate in homologous recombination, which are all ways that M. fermentans can develop antibiotic resistance.

b. Cellular Structure

Antibiotics that target cell wall synthesis in order to kill pathogenic bacteria, such as penicillin, are ineffective against M. fermentans due to the lack of a cell wall (2, 4). Additionally, the lack of a cell wall minimizes the distance in between the bacterium and host cells, allowing M. fermentans to invade cells quickly through direct contact (13). The JER strain of M. fermentans contains a high density of ABC transporters, lipoproteins, and nucleases and proteases (4). Pathogenic bacteria use ABC transporters to intake nutrients from the host cells they attack (4). Lipoproteins defend mycoplasmas against the immune response of host cells (4). Nucleases and proteases break down host cell DNA and proteins (4). Thus, these cellular components allow M. fermentans to engage in pathogenic activity (4).

c. Metabolic Structure

Components of M. fermentans are necessary for glycolysis pathway and arginine deiminase (ADI) pathway (4), meaning that M. fermentans can use glucose and arginine for metabolism. Both glucose and arginine are found in human cells (14).

d. Ecology

M. fermentans grows well at 37 degrees Celsius (2). This means that M. fermentans can incubate and grow well in the human body. Specifically, M. fermentans is most commonly found that in the genitourinary and respiratory tracts of humans (2).

4. Mode of infection

Mycoplasma fermentans is a non-motile bacterium that can adhere to, internalize into, and thus infect host cells using a surface protein and a protease (3). As discussed previously, M. fermentans is also more likely to infect immunocompromised host cells than cells with normal immune function because it is an opportunistic bacterium, as discussed previously. Yavlovich et al studied how M. fermentans specifically binds and invades to HeLa cells (3), a cell line of immunocompromised cervical cancer cells conserved from the 1950s for research purposes (15). Host cells can contain surface proteins called plasminogen, and M. fermentans contains receptor sites to which plasminogen binds (3). The binding of M. fermentans to these host cells enhances the conversion of plasminogen to plasmin by the urokinase-type plasminogen activator (uPA) (3). M. fermentans bound to plasminogen in the presence of uPA was able to invade HeLa cells, while M. fermentans without uPA was not (3). Thus, the adherence and invasion of M. fermentans to HeLa cells is dependent upon the plasminogen binding in the presence of uPA (3).

Additional factors that increase the internalization of M. fermentans into host cells are lipid raft networks containing cholesterol in host cell membranes, and the presence of divalent cations such as Mg2+ and Ca2+ in the environment, while factors that decreases the ability of M. fermentans to invade host cells are environmental temperatures lower than 37°C (the human body temperature) and environments of high osmolarity (3).

5. Metabolic processes

Describe important sources of energy, electrons, and carbon (i.e. trophy) for the organism/organisms you are focusing on, as well as important molecules it/they synthesize(s).

6. Ecology

Habitat; symbiosis; contributions to the environment.

7. Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

7. Key microorganisms

Include this section if your Wiki page focuses on a microbial process, rather than a specific taxon/group of organisms

8. Current Research

Include information about how this microbe (or related microbes) are currently being studied and for what purpose

9. References

It is required that you add at least five primary research articles (in same format as the sample reference below) that corresponds to the info that you added to this page. [Sample reference] Faller, A., and Schleifer, K. "Modified Oxidase and Benzidine Tests for Separation of Staphylococci from Micrococci". Journal of Clinical Microbiology. 1981. Volume 13. p. 1031-1035.