Pelagibacterales (SAR11)

From MicrobeWiki, the student-edited microbiology resource
Revision as of 19:54, 15 October 2015 by BarichD (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
This student page has not been curated.


Domain: Bacteria

FIGURE 1. Scanning electron microscope image of SAR11 (1).

Phylum: Proteobacteria

Class: Alphaproteobacteria

Subclass: Rickettsidae

Order: Pelagibacterales

Description and Significance

Pelagibacterales (SAR11) is an order in the Alphaproteobacteria composed of free-living planktonic oligotrophic facultative photochemotroph bacteria. (4)(5) They are most abundant group of planktonic cells in marine systems and possibly the most numerous bacterium in the world. Typically accounting for ~25% of prokaryotic cells in seawater worldwide, SAR11 bacteria play an important role in the global carbon cycle.(3) SAR11 bacteria oxidize organic compounds from primary production into CO2.

The order was originally named SAR11 following its discovery in the Sargasso Sea in 1990 by Professor Stephen Giovannoni and colleagues, from Oregon State University.(2)(5) It was first placed in the order of Rickettsiales, but after rRNA gene-based phyogenetic analysis, in 2013 it was raised to the rank of order, and then placed as sister order to the Rickettsiales in the subclass Rickettsidae. They are most closely related to the their sister order, the Rickettsiales. (5)

These gram negative, rod shaped bacteria are one of the smallest free cell living organisms (<0.7 um), with a cell volume less than 1/500th the volume of E.coli. They have a high surface to volume ratio to better absorb nutrients from its oligotrophic environment. These organisms are difficult to grow in pure culture due to their environmental adaptation to such low nutrients and slow growth. Unsurprisingly, it is also known to have one of the smallest genomes of free living cells.(7) The genome of the SAR11 clade has been generated by the DOE Joint Genome Institute. It was found that the isolates formed three micro clusters, closely related groupings within the clade. They were surprised to find that unlike marine SAR11 bacteria, the freshwater bacteria were much less genetically diverse, when measured based on the ratio of recombination to mutation in their genes.(9) It was also found that the bacteria have the complete biosynthetic pathway for all 20 amino acids and all but a few cofactors. There are also no pseudogenes, introns, transposons, or extrachromosomal elements yet observed for any cell. It is the most genetically efficient order of bacteria.


Currently the SAR11 clade is divided into five subgroups (8):

Subgroup Ia: HTCC1062, HTCC1002, HTCC9565, HTCC7211, HIMB5

Subgroup Ib: SAR193, SAR11

Subgroup II: Artic95B-1, SAR11

Subgroup IIIa: HIMB114, OM155

Subgroup IIIb: S9D-28, LD12

Subgroup IV: DQ009255

Subgroup V: HIMB59, DQ009262

FIGURE 3: 16S phylogenetic tree of the SAR11 clade (blue). SAR11 has three divergent phylogenetic lineages of the proposed family “Pelagibacteraceae”. Within the SAR11 clade there are 5 subgroups (8).

SAR11 clade possesses many unusual features for a free-living organism, including an extremely small, streamlined genome with few paralogs, no pseudogenes, and many missing genes and pathways that are otherwise common in bacteria(8). However, the SAR11 clade is phylogenetically diverse, spanning 18% 16S rRNA gene divergence. They have greater genomic rearrangement at operon boundaries than within operons, as well as hyper variable regions, possibly allowing these organisms to acquire new genetic material with adaptive significance (8).


(1) "Rebounding bacteria". 2013

(2) “SAR11 bacteria thrive — despite viruses”.“Nature”

(3) "Why Sequence SAR11 Genome Evolution?". "Joint Genome Institute" Stephen Giovannoni, Oregon State University and Michael Rappé, Hawaii Institute of Marine Biology

(4) Grote J, et al. 2012. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3(5):e00252-12. doi:10.1128/mBio.00252-12.

(5) Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM (2013) New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE 8: e83383 doi:

(6) A war without end - with Earth’s carbon cycle held in the balance

(7) Kakarova, K., et al. “Genome Streamlining in a Cosmopolitan Oceanic Bacterium. Stephen J. Giovannoni1,*, H. James Tripp1, Scott Givan2, Mircea Podar3, Kevin L. Vergin1, Damon Baptista3, Lisa Bibbs3, Jonathan Eads3, Toby H. Richardson3, Michiel Noordewier3, Michael S. Rappé4, Jay M. Short3, James C. Carrington2, Eric J. Mathur3. Science 19 August 2005: Vol. 309 no. 5738 pp. 1242-1245 DOI: 10.1126/science.1114057

(8) Grote J, et al. 2012. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3(5):e00252-12. doi:10.1128/mBio.00252-12.

(9) [ Zaremba-Niedzwiedzka K et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biology 2013, 14:R130 doi: 10.1186/gb-2013-14-11-r130]


Page authored by Digvinder Singh Mavi student of Prof. Katherine Mcmahon at University of Wisconsin-Madison.