Phyllosphere: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
No edit summary
Line 1: Line 1:
{{Uncurated}}
{{Uncurated}}
=Source of contamination=
=Introduction=


==North America==
To date, the genus ''Ignicoccus''  is comprised of single cells that are irregularly shaped coccoid ranging in diameter from 1-3 µm. The Achaean genus was first isolated from [http://en.wikipedia.org/wiki/Hydrothermal_vent marine hydrothermal vents] from [http://en.wikipedia.org/wiki/Kolbeinsey Kolbeinsey Ridge] in north Iceland and also off the coast of Mexico [[#References|[1]]] (see Figure 1). They were found to have a novel cell envelope unseen before in other Achaea [[#References|[2]]], and have a very complex and poorly understood symbiotic relationship with [http://en.wikipedia.org/wiki/Nanoarchaeum_equitans ''Nanoarchaeum equitans'' ]  [[#References|[3]]] [[#References|[4]]] [[#References|[5]]] [[#References|[6]]].
[[File:Ignicoccus locations.png|200px|thumb|right| Map showing the discovery locations of  ''I.pacificus '' (A), and  ''I.islandicus '' and '' I.hospitalis '' (B).]]


[http://en.wikipedia.org/wiki/Groundwater Groundwater] serves as water for more than 50% of people living in North America therefore a significant public resource. To date, major contamination of groundwater in North America are due to the release and use of chlorinated ethenes by industry. Examples of such toxic compounds are perchloroethene (PCE), trichloroethene (TCE). Carbon tetrachloride (CT) is also a major groundwater pollutant [[#References|[4]]]. These compounds were widely used as solvents for dry cleaning and in textile manufacturing. They are sufficiently water soluble and can travel through soil where they reach the groundwater. The relative high concentration of them here can be harmful [[#References|[6]]].
Ground water is also contaminated by pollutants that are not highly toxic, but can be utilized or modified by microorganisms to become more toxic. For instance over-fertilization in agriculture leads to an increased nitrate concentration which i.e. can cause the Blue Baby syndrome. This is seen in infants younger than six month old who rely on bacteria to digest their food. Some of these bacteria also convert nitrate, a component of fertilizer, to nitrite. In the blood nitrite reacts with hemoglobin interfering with its ability to carry oxygen. The babies show sign of suffocation and gets a bluish skin [[#References|[2]]].


=Microbial metabolism of groundwater pollutants=
=Current Species=


==Co-metabolism and degradation of TCE==
There are three officially recognized ''Ignicoccus''  species: ''Ignicoccus hospitalis'' , '' Ignicoccus pacificus '' and '' Ignicoccus islandicus'' . The three species were initially identified by 16S rRNA gene analysis from the hydrothermal vent samples obtained from Kolbeinsey Ridge and the coast of Mexico[[#References|[1]]] . All three species have been characterized as hyperthermophiles that are also [http://en.wikipedia.org/wiki/Obligate_anaerobe obligate anaerobes] which explains the presence of ''Ignicoccus'' species near hydrothermal vents[[#References|[1]]] . None of the members of the ''Ignicoccus''  genus have been found to be [http://en.wikipedia.org/wiki/Pathogenic] pathogenic to humans.


[[File:Aerobic degradation of TCE.jpg|thumb|400px|right|]]
=Morphology=


Some dehalorespiring organisms are capable of degrading PCE, TCE and CT into non-toxic compounds. Degradation of PCE is only known to happen through reductive dechlorination and only under anaerobic condition.
The members of the ''Ignicoccus''  genus are motile irregular coccoid cells that range in diameter from 1 to 3 µm. The motility observed is due to the presence of flagella, but unfortunately the polarity of the flagella is not yet fully elucidated. They are known to have an outer-membrane but no [http://en.wikipedia.org/wiki/S-layer S-layer]. This is a novel characteristic for these [http://en.wikipedia.org/wiki/Archaea Archaea] because''Ignicoccus'' are the only known Archaea that have been shown to possess an outer-membrane[[#References|[2]]] [[#References|[10]]] .  
TCE is, unlike PCE, able to be degraded under aerobic conditions. This can happen through [http://en.wikipedia.org/wiki/Cometabolism cometabolism]. In co-metabolism a compound is transformed by an organism that doesn’t use the compound as an energy or carbon source and reducing power is not provided. The organism relies on another compound to serve as an energy and carbon source [[#References|[3]]] . Methanotrophic organisms grow on methane as a primary substrate and oxygen but some are also able to degrade TCE as a secondary substrate. This is because of nonspecific enzymatic activity of enzymes (methane monooxygenase, MMO) involved in degradation of the primary substrate. The degradation of TCE serves no beneficial purpose for these organisms. It generates an [http://en.wikipedia.org/wiki/Epoxide epoxide](cf. figure 1) which is transported out of the cell and here other heterotrophic organisms bring about the transformation into non-toxic compounds resulting in the formation of CO2. Several factors inhibit the aerobic degradation of TCE here among the concentration of contamination, the pH and the temperature. Because both TCE and methane bind to the same site in MMO competition between growth substrate and non-growth substrate also seems to limit degradation of TCE [[#References|[3]]].


==Dehalogenation==
[[File:Huber-abb2.jpg|300px|thumb|left| Ultrathin section of an ''Ignicoccus hospitalis'' cell.]]


[[File:PDTC complex.gif|thumb|400px|right|]]


The bacterium [http://en.wikipedia.org/wiki/Pseudomonas_stutzeri Pseudomonas stutzeri strain KC] can dehalogenate CT into carbon dioxide and chlorine without producing the toxic intermediate chloroform (CCl3H).  This bacterium is originally isolated from an aquifer in Seal Beach in California. It is dependent on anaerobic conditions and in iron-limited media this bacterium produces and secretes a [http://groups.molbiosci.northwestern.edu/holmgren/Glossary/Definitions/Def-C/chelator.html chelator] called pyridine-2,6 (bis)thiocarboxylate (PDTC cf. figure 2.) [[#References|[5]]]. When PDTC is in contact with a broad range of cell components it turns into a reduced form (the iron in the complex is reduced) and this is essential for its extracellular activity. PDCT has to be in a complex with copper in order for the fast turnover rate of CT into CO2.  This complex functions both as a reactant and a catalyst in the reaction. When Pseudomonas stutzeri is in environments were nitrate is present as the electron acceptor a more rapid production of PDTC is observed [[#References|[6]]].
==Outer-Membrane==


==Denitrification==
The outer-membrane of ''Ignicoccus''  species was found to be composed of various derivatives of the typical lipid [http://en.wikipedia.org/wiki/Archaeol archaeol], including the derivative known as [http://en.wikipedia.org/wiki/Caldarchaeol caldarchaeol] [[#References|[5]]] . The outer-membrane is dominated by a pore composed of the Imp1227 protein (''Ignicoccus''  outer membrane protein 1227). The Imp1227 protein forms a large nonamer ring with a predicted pore size of 2nm[[#References|[7]]] .
In many agricultural areas in North America the nitrate concentrations exceed the standards. [http://en.wikipedia.org/wiki/Denitrifying_bacteria Denitrifying organisms] are capable of using nitrate or nitrite as terminal electron acceptors thereby removing the excess of nitrogen from the environment. The organism Methylomirabilis oxyfera is an example of such an organism. This denitrifying bacterium is special in that it doesn’t have the gene encoding nitrous oxide reductase, the protein that converts N2O to N2. Instead they harbor an operon which encodes the complete methane monooxygenase complex. This enables it to oxide methane in an aerobic pathway [[#References|[1]]]. The mechanism takes advances of the oxidation of methane to drive denitrification. They do so by producing oxygen from nitrite via nitrite oxide (thereby bypassing the intermediate nitrous oxide) and then use this oxygen to oxide methane in an anaerobic environment. This is called nitrite dependent anaerobic methane oxidation. The overall redox reaction is 3CH4 + 8NO2- + 8H+ -> 3CO2 + 4N2 + 10 H2O. In this way the organism uses the potent greenhouse gas methane and reduces nitrite thereby contributing to the removal of excess N-compounds in groundwater [[#References|[1]]].


=Treatment technologies=
=Metabolism=


[[File:Pumpandtreat.gif|thumb|400px|right|]]
''Ignicoccus'' species are [http://en.wikipedia.org/wiki/Chemolithoautotroph chemolithoautotrophs] that use molecular hydrogen as the inorganic electron donor and elemental sulphur as the inorganic terminal electron acceptor[[#References|[1]]] . The reduction of the elemental sulphur results in the production of hydrogen sulphide gas.


Contamination of groundwater can lead to severe health problems and environmental changes if left untreated. Bioaugmentation is a widespread biological technique used in the removal of chlorinated compounds. By introducing natural electron donors that are helpful in the removal of halogenated compounds into the groundwater the growth of dehalorespiring organisms can be favored. Optional conditions for dehalogenation are provided without any engineering steps taken [[#References|[7]]].  
''Ignicoccus'' are autotrophs in that they fix their own carbon dioxide into organic molecules. The carbon dioxide fixation process they use is a novel process called [http://www.pnas.org/content/105/22/7851.full a dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle] that involves 14 different enzymes[[#References|[8]]] .  
Pump and treat method is also one of the most used groundwater remediation techniques. Removal of contaminated groundwater from soil with the use of pumps followed by subsequent remediation at the surface helps overcome the persistence of the pollutants (cf. figure 3). It is typically biological or chemical treatments that remove the pollutants. This method is costly and slow however and some contaminants cannot be removed because they stick to soil and rocks or are not sufficient water soluble [[#References|[4]]].


Members of the ''Ignicoccus''  genus are able to use ammonium as a nitrogen source.
==Growth Conditions==
Because members of the ''Ignicoccus''  genus are [http://en.wikipedia.org/wiki/Hyperthermophile hyperthermophiles] and obligate anaerobes, it is not surprising that their growth conditions are very complex. They are grown in a liquid medium known as ½ SME ''Ignicoccus''  which is a solution of synthetic sea water which is then made anaerobic.
Grown in this media at their optimal growth temperature of 90C, the members of the ''Ignicoccus''  genus typically reach a cell density of ~4x107cells/mL[[#References|[1]]] .
The addition of [http://en.wikipedia.org/wiki/Yeast_extract yeast extract] to the ½ SME media has been shown to stimulate the growth and increase maximum cell density achieved. The mechanism by which this is achieved is not known[[#References|[1]]] .
=Symbiosis=
''Ignicoccus hospitalis''  is the only member of the genus ''Ignicoccus'' that has been shown to have an extensive [http://en.wikipedia.org/wiki/Symbiosis symbiotic relationship] with another organism.
''Ignicoccus hospitalis''  has been shown to engage in symbiosis with ''Nanoarchaeum equitans'' . ''Nanoarchaeum equitans''  is a very small coccoid species with a cell diameter of 0.4 µm[[#References|[9]]] . Genome analysis has provided much of the known information about this species.
To further complicate the symbiotic relationship between both species, it’s been observed that the presence of ''Nanoarchaeum equitans''  on the surface of ''Ignicoccus hospitalis''  somehow inhibits the cell replication of ''Ignicoccus hospitalis'' . How or why this occurs has not yet been elucidated[[#References|[3]]] .
[[File:Urzwerg.jpg|300px|thumb|right| ''Ignicoccus hospitalis'' with two attached  ''Nanoarchaeum equitans'' cells.]]
[[File:IhNeRelationship2 jpeg.jpg|250px|thumb|left| Epifluoroscence micrographs of an ''Ignicoccus hospitalis''and ''Nanoarchaeum equitans'' coculture stained with BacLight at various time points. Living cells stain green while dead cells stain red. (A) Exponential growth phase 3.25 hours after inoculation. (B) Transition into the stationary phase 7.5 hours after inoculation. (C) Stationary phase 10 hours after inoculation. (D) Stationary phase 23 hours after inoculation.]]
==''Nanoarchaeum equitans''==
''Nanoarchaeum equitans'' has the smallest non-viral genome ever sequenced at 491kb[[#References|[9]]] . Analysis of the genome sequence indicates that 95% of the predicted proteins and stable RNA molecules are somehow involved in repair and replication of the cell and its genome[[#References|[3]]] .
Analysis of the genome also showed that ''Nanoarchaeum equitans''  lacks nearly all genes known to be required in amino acid, nucleotide, cofactor and lipid metabolism. This is partially supported by the evidence that ''Nanoarchaeum equitans''  has been shown to derive its cell membrane from its host ''Ignicoccus hospitalis''  cell membrane. The direct contact observed between ''Nanoarchaeum equitans'' and ''Ignicoccus hospitalis''  is hypothesized to form a pore between the two organisms in order to exchange metabolites or substrates (likely from ''Ignicoccus hospitalis''  towards ''Nanoarchaeum equitans'' due to the parasitic relationship). The exchange of periplasmic vesicles is not thought to be involved in metabolite or substrate exchange despite the presence of vesicles in the periplasm of ''Ignicoccus hospitalis'' .
These analyses of the ''Nanoarchaeum equitans'' genome support the fact of the extensive symbiotic relationship between ''Nanoarchaeum equitans'' and ''Ignicoccus hospitalis''. However, it has not yet been proven that it is a strictly parasitic relationship and further research may prove that there is a commensal relationship between the two species.
=References=
=References=


(1) Luesken, F. a, van Alen, T. a, van der Biezen, E., Frijters, C., Toonen, G., Kampman, C., Hendrickx, T. L. G., et al. (2011). Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Applied microbiology and biotechnology, 92(4), 845–54. doi:10.1007/s00253-011-3361-9
(1) Burggraf S., Huber H., Mayer T., Rachel R., Stetter K.O. and Wyschkony I. ” Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov.” International Journal of Systematic and Evolutionary Microbiology, 2000, Volume 50.
 
(2) Naether D.J. and Rachel R. “The outer membrane of the hyperthermophilic archaeon Ignicoccus: dynamics, ultrastructure and composition.” Biochemical Society Transactions, 2004, Volume 32, part 2.
 
(3) Giannone R.J., Heimerl T., Hettich R.L., Huber H., Karpinets T., Keller M., Kueper U., Podar M. and Rachel R. “Proteomic Characterization of Cellular and Molecular Processes that Enable the Nanoarchaeum equitans- Ignicoccus hospitalis Relationship.” PLoS ONE, 2011, Volume 6, Issue 8.
 
(4) Eisenreich W., Gallenberger M., Huber H., Jahn U., Junglas B., Paper W., Rachel R. and Stetter K.O. “Nanoarchaeum equitans and Ignicoccus hospitalis: New Insights into a Unique, Intimate Association of Two Archaea.” Journal of Bacteriology, 2008, DOI: 10.1128/JB.01731-07.


(2) Mahler, R. L., Colter, A., & Hirnyck, R. (2007). Nitrate and Groundwater. University of Idaho Extension.
(5) Grosjean E., Huber H., Jahn U., Sturt H, and Summons R. “Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I.” Arch Microbiol, 2004, DOI: 10.1007/s00203-004-0725-x.


(3) Peterson, B. C. (1999). Aerobic Degradation of Trichloroethylene. Brigham Young University.
(6) Briegel A., Burghardt T., Huber H., Junglas B., Rachel R., Walther P. and Wirth R. “Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography.”  Arch Microbiol, 2008, DOI 10.1007/s00203-008-0402-6.


(4) Semkiw, E. S., & Barcelona, M. J. (2011). Field Study of Enhanced TCE Reductive Dechlorination by a Full-Scale Whey PRB, (1), 68–78. doi:10.1111/j1745
(7) Burghardt T., Huber H., Junglas B., Naether D.J. and Rachel R. “The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex.” Molecular Microbiology, 2007, Volume 63.


(5) Sepúlveda-Torre, L., Huang, A., Kim, H., & Criddle, C. S. (2002). Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. Journal of molecular microbiology and biotechnology, 4(2), 151–61. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11873910
(8) Berg I.A., Eisenreich W., Eylert E., Fuchs G., Gallenberger M., Huber H.,Jahn U. and Kockelkorn D. “A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis.” PNAS, 2008, Volume 105, issue 22.


(6) Smith, L. H., Yang, Y., & De-fg-er, D. O. E. G. N. (2003). Biodegradation of chlorinated solvents: Reactions near DNAPL and enzyme functions, (70063), 1–15.
(9) Brochier C., Gribaldo S., Zivanovic Y., Confalonieri F. and Forterre P. “Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales?” Genome Biology 2005, DOI:10.1186/gb-2005-6-5-r42.


(7) T. Wilson James. (n.d.). Remediation Apparatus and Method for organic contamination in soil and groundwater.pdf.
(10) Huber H., Rachel R., Riehl S. and Wyschkony I. “The ultrastructure of Ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon.” Archaea, 2002, Volume 1.

Revision as of 03:32, 14 December 2012

This student page has not been curated.

Introduction

To date, the genus Ignicoccus is comprised of single cells that are irregularly shaped coccoid ranging in diameter from 1-3 µm. The Achaean genus was first isolated from marine hydrothermal vents from Kolbeinsey Ridge in north Iceland and also off the coast of Mexico [1] (see Figure 1). They were found to have a novel cell envelope unseen before in other Achaea [2], and have a very complex and poorly understood symbiotic relationship with Nanoarchaeum equitans [3] [4] [5] [6].

Map showing the discovery locations of I.pacificus (A), and I.islandicus and I.hospitalis (B).


Current Species

There are three officially recognized Ignicoccus species: Ignicoccus hospitalis , Ignicoccus pacificus and Ignicoccus islandicus . The three species were initially identified by 16S rRNA gene analysis from the hydrothermal vent samples obtained from Kolbeinsey Ridge and the coast of Mexico[1] . All three species have been characterized as hyperthermophiles that are also obligate anaerobes which explains the presence of Ignicoccus species near hydrothermal vents[1] . None of the members of the Ignicoccus genus have been found to be [1] pathogenic to humans.

Morphology

The members of the Ignicoccus genus are motile irregular coccoid cells that range in diameter from 1 to 3 µm. The motility observed is due to the presence of flagella, but unfortunately the polarity of the flagella is not yet fully elucidated. They are known to have an outer-membrane but no S-layer. This is a novel characteristic for these Archaea becauseIgnicoccus are the only known Archaea that have been shown to possess an outer-membrane[2] [10] .

Ultrathin section of an Ignicoccus hospitalis cell.


Outer-Membrane

The outer-membrane of Ignicoccus species was found to be composed of various derivatives of the typical lipid archaeol, including the derivative known as caldarchaeol [5] . The outer-membrane is dominated by a pore composed of the Imp1227 protein (Ignicoccus outer membrane protein 1227). The Imp1227 protein forms a large nonamer ring with a predicted pore size of 2nm[7] .

Metabolism

Ignicoccus species are chemolithoautotrophs that use molecular hydrogen as the inorganic electron donor and elemental sulphur as the inorganic terminal electron acceptor[1] . The reduction of the elemental sulphur results in the production of hydrogen sulphide gas.

Ignicoccus are autotrophs in that they fix their own carbon dioxide into organic molecules. The carbon dioxide fixation process they use is a novel process called a dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle that involves 14 different enzymes[8] .

Members of the Ignicoccus genus are able to use ammonium as a nitrogen source.

Growth Conditions

Because members of the Ignicoccus genus are hyperthermophiles and obligate anaerobes, it is not surprising that their growth conditions are very complex. They are grown in a liquid medium known as ½ SME Ignicoccus which is a solution of synthetic sea water which is then made anaerobic.

Grown in this media at their optimal growth temperature of 90C, the members of the Ignicoccus genus typically reach a cell density of ~4x107cells/mL[1] .

The addition of yeast extract to the ½ SME media has been shown to stimulate the growth and increase maximum cell density achieved. The mechanism by which this is achieved is not known[1] .


Symbiosis

Ignicoccus hospitalis is the only member of the genus Ignicoccus that has been shown to have an extensive symbiotic relationship with another organism.

Ignicoccus hospitalis has been shown to engage in symbiosis with Nanoarchaeum equitans . Nanoarchaeum equitans is a very small coccoid species with a cell diameter of 0.4 µm[9] . Genome analysis has provided much of the known information about this species.

To further complicate the symbiotic relationship between both species, it’s been observed that the presence of Nanoarchaeum equitans on the surface of Ignicoccus hospitalis somehow inhibits the cell replication of Ignicoccus hospitalis . How or why this occurs has not yet been elucidated[3] .

Ignicoccus hospitalis with two attached Nanoarchaeum equitans cells.
Epifluoroscence micrographs of an Ignicoccus hospitalisand Nanoarchaeum equitans coculture stained with BacLight at various time points. Living cells stain green while dead cells stain red. (A) Exponential growth phase 3.25 hours after inoculation. (B) Transition into the stationary phase 7.5 hours after inoculation. (C) Stationary phase 10 hours after inoculation. (D) Stationary phase 23 hours after inoculation.


Nanoarchaeum equitans

Nanoarchaeum equitans has the smallest non-viral genome ever sequenced at 491kb[9] . Analysis of the genome sequence indicates that 95% of the predicted proteins and stable RNA molecules are somehow involved in repair and replication of the cell and its genome[3] .

Analysis of the genome also showed that Nanoarchaeum equitans lacks nearly all genes known to be required in amino acid, nucleotide, cofactor and lipid metabolism. This is partially supported by the evidence that Nanoarchaeum equitans has been shown to derive its cell membrane from its host Ignicoccus hospitalis cell membrane. The direct contact observed between Nanoarchaeum equitans and Ignicoccus hospitalis is hypothesized to form a pore between the two organisms in order to exchange metabolites or substrates (likely from Ignicoccus hospitalis towards Nanoarchaeum equitans due to the parasitic relationship). The exchange of periplasmic vesicles is not thought to be involved in metabolite or substrate exchange despite the presence of vesicles in the periplasm of Ignicoccus hospitalis .

These analyses of the Nanoarchaeum equitans genome support the fact of the extensive symbiotic relationship between Nanoarchaeum equitans and Ignicoccus hospitalis. However, it has not yet been proven that it is a strictly parasitic relationship and further research may prove that there is a commensal relationship between the two species.




References

(1) Burggraf S., Huber H., Mayer T., Rachel R., Stetter K.O. and Wyschkony I. ” Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov.” International Journal of Systematic and Evolutionary Microbiology, 2000, Volume 50.

(2) Naether D.J. and Rachel R. “The outer membrane of the hyperthermophilic archaeon Ignicoccus: dynamics, ultrastructure and composition.” Biochemical Society Transactions, 2004, Volume 32, part 2.

(3) Giannone R.J., Heimerl T., Hettich R.L., Huber H., Karpinets T., Keller M., Kueper U., Podar M. and Rachel R. “Proteomic Characterization of Cellular and Molecular Processes that Enable the Nanoarchaeum equitans- Ignicoccus hospitalis Relationship.” PLoS ONE, 2011, Volume 6, Issue 8.

(4) Eisenreich W., Gallenberger M., Huber H., Jahn U., Junglas B., Paper W., Rachel R. and Stetter K.O. “Nanoarchaeum equitans and Ignicoccus hospitalis: New Insights into a Unique, Intimate Association of Two Archaea.” Journal of Bacteriology, 2008, DOI: 10.1128/JB.01731-07.

(5) Grosjean E., Huber H., Jahn U., Sturt H, and Summons R. “Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I.” Arch Microbiol, 2004, DOI: 10.1007/s00203-004-0725-x.

(6) Briegel A., Burghardt T., Huber H., Junglas B., Rachel R., Walther P. and Wirth R. “Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography.” Arch Microbiol, 2008, DOI 10.1007/s00203-008-0402-6.

(7) Burghardt T., Huber H., Junglas B., Naether D.J. and Rachel R. “The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex.” Molecular Microbiology, 2007, Volume 63.

(8) Berg I.A., Eisenreich W., Eylert E., Fuchs G., Gallenberger M., Huber H.,Jahn U. and Kockelkorn D. “A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis.” PNAS, 2008, Volume 105, issue 22.

(9) Brochier C., Gribaldo S., Zivanovic Y., Confalonieri F. and Forterre P. “Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales?” Genome Biology 2005, DOI:10.1186/gb-2005-6-5-r42.

(10) Huber H., Rachel R., Riehl S. and Wyschkony I. “The ultrastructure of Ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon.” Archaea, 2002, Volume 1.