Plastic-eating Bacteria

From MicrobeWiki, the student-edited microbiology resource
Jump to: navigation, search
This is a curated page. Report corrections to Microbewiki.


Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.

By Meheret Ourgessa

At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki.

The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC. Every image requires a link to the source.
Closed double brackets: ]]

Other examples:
Subscript: H2O
Superscript: Fe3+

Introduce the topic of your paper. What is your research question? What experiments have addressed your question? Applications for medicine and/or environment?
Sample citations: [1] [2]

A citation code consists of a hyperlinked reference within "ref" begin and end codes.
To repeat the citation for other statements, the reference needs to have a names: "<ref name=aa>"
The repeated citation works like this, with a back slash.[1]

Ideonella sakaiensis

Ideonella sakeasis was first discovered in 2016 by Japanese researchers who isolated the novel species from outside a bottle-recycling plant. (7)(8) The authors identified the species by screening 250 environmental samples at the PET bottle recycling site. (12) At the time, the first and only known bacteria species which had naturally evolved to be capable of breaking-down and digesting plastic. (7) Earlier work had shown that the mesophilic fungus Fusarium oxysporum could also produce an enzyme that is able to break down PET into its constituent monomers.(13) The discovery of I. Sakeasis was more exciting, however, as bacteria are much easier to harness for industrial uses compared with fungi and other eukaryotes. (9)(?) Furthermore, it was shown that the enzyme involved in hydrolyzing PET in I. Sakeasis had as much as 88 times more activity compared to the enzyme found in F. oxysporum. (8) A hydrolase enzyme isolated from the actinomycete Thermobifida fusca was also shown to effectively depolymerize PET.(14) But T. fusca bacteria do not use this enzyme to catabolize PET and the activity of this enzyme is about 120 times lower.(8)

I. sakeasis stain Gram-negative and are aerobic bacteria belonging to the phylum Proteobacteria. (10) The cells are non-spore forming and rod-shaped. (10) The genus Ideonella belongs to the family Comamonadaceae of the class Betaproteobacteria. (10) I. Sakeasis was identified as a representative of a novel species in the genus Ideonella on the basis of its physiological, biochemical and phylogenetic data, including DNA–DNA relatedness. (10) The DNA–DNA relatedness of I. sakeasis with its closest phylogenetic neighbours was well below the 70 % cut-off point recommended for the assignment of the strains to the same genomic species. (10) The bacteria grows within the pH range 5.5–9.0 (optimally between pH 7–7.5) and temperature range 15–42 ºC (optimally between 30–37 ºC) and cannot grow with 3% NaCl. (10) The cells of the species are motile and use a polar flagellum to move. (10) They attach to PET films using appendages which can also grow longer to connect the cells to each other. (8) Appendages connecting the cell to PET films might assist in the delivery of secreted enzymes into the film. (8) I. Sakeasis can degrade and assimilate PET as a sole carbon source. (8)(12)

The researchers who discovered I. sakeasis identified two enzymes produced by the bacteria involved in PET degradation - PETase and MHETase (MHET stands for mono(2-hydroxyethyl) terephthalic acid, the monoester of tetraphtalic acid and ethylene glycol) - which catabolized PET into its monomers tetraphthalic acid and ethylene glycol. (8) These monomers are then used for bacterial metabolism.(17)(8) Although the PETase enzyme has been described in other bacterial species (mostly belonging to the phylum Actinobacteria), MHETase seems to be unique to the genome of I. sakeasis. (17) Originally, the degradation of PET by I. sakeasis was relatively slow; complete degradation of a small PET film took 6 weeks. (8)(12) Recently, researchers were able to genetically modify I. sakeasis to break down PET faster and also degrade PEF( polyethylene-2,5-furandicarboxylate) which is an emerging bioderived PET replacement with improved properties. (9)(15) The newly modified PETase enzyme is active on the aromatic polyesters (PET and PEF), but not aliphatic polyesters. (15) The researchers who engineered this new enzyme concluded that it is likely that significant potential remains for improving its activity further. (15)

PET was only patented roughly 80 years ago and put into widespread use in the 1970s. (15) It is likely that the enzyme system for PET degradation and catabolism in I. sakaiensis appeared only recently, demonstrating the remarkable speed at which microbes adapt and evolve to exploit new substrates. (15) In this case, the new substrate was waste from an industrial PET recycling facility. (15) It is thought that a limited number of mutations in a hydrolase, such as PET hydrolytic cutinase, that inherently targets the natural aliphatic polymer cutin (waxy polymer that is one of two main components of the plant cuticle) may have resulted in enhanced selectivity for PET and led to the evolution of the PET degradation pathway in I. sakeasis. (8) Genomic analysis has shown that a genomic basis to support the metabolism of MHET analogs was established much earlier than when ancestral PETase proteins were incorporated into the pathway. (8) PET enrichment in the habitat of I. sakeasis is thought to have potentially promoted the selection of a bacterium that might have obtained the necessary set of genes through lateral gene transfer. (8)

Section 2

Plastics have mainly been introduced since the 1960s.(17) Given the relatively few decades since these polymers became available and widespread, nature has only had a very short time to evolve highly active enzymes. (17) In general, it is believed that the microbial degradation of human-made polymers is a very slow process. (17) The difficulty with degradation of plastics by microbes mainly stems from the high molecular weight of the polymers, strong C-C bonds and the extremely hydrophobic surface of plastics, which is very difficult to attack by enzymes.(17) Nonetheless, a number of bacteria and other microbes have been reported to be able to degrade a variety of plastics or contain enzymes that can. (17)(18)

As discussed earlier, researchers have discovered and characterized enzymes from bacteria other than I. sakeasis that are capable of breaking down PET. Currently, only a few bacteria (and fungi) have been described to be able to partially degrade PET to oligomers or monomers and all known PET hydrolases have relatively low turnover rates.(17) PETases represent the best-studied class of enzymes with respect to the hydrolysis of synthetic polymers. (17) Interestingly, the trait for PET degradation appears to be limited to a few bacterial phyla and is mostly found in bacterial isolates that are members of the Gram-positive phylum Actinobacteria.(17) Bacteria that have been found to contain PET hydrolases enzymes include Thermobifida fusca, Bacillus subtilis and species from the genera Thermomonospora.(17) However, none of them have been reported to contain MHETase, the enzyme that breaks down the monomers of PET after it is degraded by a PETase.(17) Overall, the I. sakaiensis PETase and MHETase enzymes are the best-studied models for PET degradation and it seems that they are the most potent as well. (17)(8)

Another plastic polymer bacteria have been shown to degrade is polyurethane (PUR/PU).(17)(4) There are a number of different types of polyurethane polymers, but microbes act on only those that have ester links.(17) Although ether linked polyurethane plastics exist, it seems that no enzymes capable of acting on polyurethane ethers have been described.(17) With respect to bacteria capable of degrading PUR, Gram-negative Betaproteobacteria from the genus Pseudomonas have been most frequently linked with PUR activities.(17) One Pseudomonas species that has been studied for its PUR-degrading activity is able to grow on a PU-diol solution, a polyurethane oligomer, as the sole source of carbon, energy and nitrogen. (4) This bacterial strain was obtained from soil samples and is capable of degrading both, an oligomeric PU and a PU building block.(4) While the list of PU-active bacteria is steadily increasing, various fungal species have also been identified as PU degraders. (17)

Another plastic polymer that has been associated with bacterial degradation is polyethylene (PE). Research performed in polyethylene biodegradation, both with pure strains and complex microbial communities has proved that biodegradation of this material although slow is actually happening in nature.(19) Possible PE degradation has been affiliated with a surprisingly large number of bacterial genera among which are the Gram-negative species with the genera Pseudomonas, Ralstonia, and Stenotrophomonas but also many Gram-positive taxa. (17) A few studies have also linked PE-degrading microbes with the complex gut microbiomes of invertebrates.(17)(5) One such study indicated that during short-term exposure, the intestinal microbiome of the larvae of G. mellonella (a greater wax moth) is intricately associated with polyethylene biodegradation in vivo.(5) The study identified microorganisms in the genus Acinetobacter that appeared to be involved in this biodegradation process.(5) A number of fungal genera have also been affiliated with assumed PE degradation. (17)

Another plastic that has been targeted for bacterial degradation is polyamide.(17) Polyamide (PA) is a polymer of repeating units of aliphatic, semiaromatic, or aromatic molecules linked via amide bonds.(17) Because the monomers for making this polymer can be very versatile, there are many different types of synthetic polyamides, with the most popular being nylon and Kevlar.(17) Although no microorganisms capable of fully degrading the intact high-molecular-weight polymer have been reported, several studies are available on bacteria acting on either linear or cyclic nylon oligomers with short chain lengths.(17) Examples include .(17) The only enzyme that has been reported to act on high-molecular-weight nylon fibers so far originated from a white rot fungus.(17) Some Pseudomonas species have been reported to utilize 6-aminohexanoate-dimers, oligomers of polyamide, as a sole carbon and nitrogen source.

Polystyrene(PS), a synthetic polymer widely used for packaging industries and many daily use articles, has also been a target of possible bacterial degradation.(17) Unfortunately, much like polyamide, there is no known enzyme that can degrade the high molecular-weight polystyrene polymer.(17) Styrene itself is able to be used as a carbon source for growth by some microorganisms.(17)Styrene degradation in bacteria is well studied in Pseudomonas, Xanthobacter, Rhodococcus, Corynebacterium, and others.(17) It appears to be a widespread metabolism.(17) Rhodococcus ruber has been shown to form biofilms on PS and partially degrade it.(20)(17) A biofilter consisting of Brevibacillus sp. has been shown to remove 3 kg of styrene in a day.(20) In addition, Several bacteria have been reported to form either alone or as members of consortium biofilms on polystyrene films and particles, thereby degrading the polymer.


In sharp contrast to the huge global production rates of polypropylene and polyvinyl chloride(PVC), hardly any information is available on microbial degradation of either of these important polymers.(17) Though there are a very few reports that describe the degradation of these polymers based on weight loss and using mixed species microbial communities have been published(21)(22), it is likely that these reports were in part misled by the degradation of the chemical additives rather than the polymer.(17) As a result, no defined enzymes or pathways that are responsible for the degradation of either of these two high molecular-weight polymers are known.(17)

Arctic microorganisms may have unique potential for biodegradation of plastics due to the environmental conditions of polar oceans, which differ from other marine ecosystems.(23) Bacteria from these regions respond quickly to changing environmental patterns. (23) Although there isn’t much research conducted on the interactions between plastic and marine microbiota, the growing amount of plastic waste might force the microorganisms in these environments to adapt to new substrates.(23) Thus, these organisms are prime area for future research on biodegradation of plastics.(23) The table below lists some microorganisms isolated from cold environments and able to degrade bacteria.(23)

Section 3

Include some current research, with at least one figure showing data.

Section 4



Authored for BIOL 238 Microbiology, taught by Joan Slonczewski, 2018, Kenyon College.