Prevotella intermedia: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 8: Line 8:


=3. Genome structure=
=3. Genome structure=
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?
Prevotella intermedia 17, a strain from the human periodontal pocket, was the first published genome sequence of Prevotella. Genes involved in P. intermedia’s cell envelope structure are highly conserved among multiple strains, including Prevotella intermedia 17. AdpB, a binding protein on the cell surface which is thought to be involved in the microbe’s adhesion capabilities, is highly conserved and found in all strains of P. intermedia (5). In the process of analyzing different strains of P. intermedia, scientists have found that only about 3% of the whole genome typically accounts for alignment between two strains. Despite the small percentage of alignment in nucleotide sequences, scientists found a 49Kb region where gene content is conserved and shared among the different genomes. Prevotella, as a genus, is reported to have roughly 165-170 core genes P. intermedia’s set of core genes allows it to thrive in diverse environments (5).
 
=4. Cell structure=
=4. Cell structure=
Interesting features of cell structure. Can be combined with “metabolic processes”
Interesting features of cell structure. Can be combined with “metabolic processes”

Revision as of 19:09, 11 December 2017

This student page has not been curated.

1. Classification

a. Higher order taxa

Bacteria; Bacteroidetes; Bacteroidetes; Bacteroidales; Prevotellaceae; Prevotella intermedia (1)

2. Description and significance

Prevotella intermedia is a bacteria that previously went by the Genus name of Bacteroides. With advancements in DNA sequencing, researchers discovered that many bacteria previously classified as Bacteroides would be more appropriately fit for a new genus, Prevotella, due to their bile-sensitive characteristics. The genus Bacteroides was re-classified to contain bacteria that are bile-resistant gram-negative bacilli (2). One of only two stains of the entire Prevotella genus, among all species, that has had its entire DNA genome sequenced is P. intermedia (3). As with other pathogenic species of Prevotella, P. intermedia has been researched for its various pathogenic effects in humans. It is commonly studied for its role in the oral cavity, and more specifically, periodontal disease. P. intermedia is seen as the main cause of many periodontal diseases and is often hard to eliminate in infected areas, due to its ability to form biofilms. It antibiotic-resistant capabilities have serious implications for human health (4). P. intermedia’s pathogenic impacts on human health are not yet fully understood.

3. Genome structure

Prevotella intermedia 17, a strain from the human periodontal pocket, was the first published genome sequence of Prevotella. Genes involved in P. intermedia’s cell envelope structure are highly conserved among multiple strains, including Prevotella intermedia 17. AdpB, a binding protein on the cell surface which is thought to be involved in the microbe’s adhesion capabilities, is highly conserved and found in all strains of P. intermedia (5). In the process of analyzing different strains of P. intermedia, scientists have found that only about 3% of the whole genome typically accounts for alignment between two strains. Despite the small percentage of alignment in nucleotide sequences, scientists found a 49Kb region where gene content is conserved and shared among the different genomes. Prevotella, as a genus, is reported to have roughly 165-170 core genes P. intermedia’s set of core genes allows it to thrive in diverse environments (5).

4. Cell structure

Interesting features of cell structure. Can be combined with “metabolic processes”

5. Metabolic processes

Describe important sources of energy, electrons, and carbon (i.e. trophy) for the organism/organisms you are focusing on, as well as important molecules it/they synthesize(s).

6. Ecology

Habitat; symbiosis; contributions to the environment.

7. Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

7. Key microorganisms

Include this section if your Wiki page focuses on a microbial process, rather than a specific taxon/group of organisms

8. Current Research

Include information about how this microbe (or related microbes) are currently being studied and for what purpose

9. References

It is required that you add at least five primary research articles (in same format as the sample reference below) that corresponds to the info that you added to this page. [Sample reference] Faller, A., and Schleifer, K. "Modified Oxidase and Benzidine Tests for Separation of Staphylococci from Micrococci". Journal of Clinical Microbiology. 1981. Volume 13. p. 1031-1035.