Saccharophagus degradans

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Saccharophagus degradans

Classification

Higher order taxa

Bacteria; Proteobacteria; Gammaproteobacteria; Alteromonadales; Alteromonadaceae

Species

Saccharophagus degradans 2-40

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

Saccharophagus degradans has a circular chromosome that is 5,057,531 bp long. There are 4,008 protein coding genes out of a total of 4,067. The genome also includes 50 structural RNAs (5). What originally set S. degradans apart from the Microbulbifer and Teredinibacter groups was that it’s G+C content was 45.8% as compared to the 57-59% and 49-51% of Microbulbifer and Teredinibacter bacteria respectively (1). So far there have been identified 180 open reading frames (ORF) that code for carbohydrases. There are also around 112 ORFs that contain catalytic and/or carbohydrate-binding modules (CBM) with specificity for plant-derived polysaccharides (3). There are no known plasmids associated with Saccharophagus degradans that have been identified at this point.

Cell structure and metabolism

Saccharophagus degradans is a gram-negative bacterium which means that it has a cell membrane in addition to a very thick cell wall on top of its membrane. The cell wall provides additional protection against hydrophobic substances like antibiotics. A structural characteristic that led to S. degradans being placed into its own distinct group was that the major fatty acid used was different compared to its relatives in the Microbulbifer and Teredinibacter groups. While iso-C15:0 is used in Microbulbifer and Teredinibacter bacteria, S. degradans uses iso-16:0 (1). S. degradans mainly uses CPs as a source of metabolism. These include agar, alginate, cellulose, chitin, beta-glucan, laminarin, pectin, pullulan, starch, and xylan (2). Although it can use all ten of these, the agar and cellulose pathways have been most studied.

For the degradation of cellulose, 13 cellulose depolymerases are used accompanied by seven accessory enzymes which include two cellodextrinases, three cellobiases, a cellodextrin phosphorlyase, and a cellobiose phosphorylase (3). In one pathway, the cellulose are cleaved into shorter, random-length chains and cellodextrins. The shorter chains are further hydrolyzed by surface lipoproteins into cellodextrins. The cellodextrins are then cleaved into glucose and oligocellodextrins which are imported into the cytoplasm (3). Although there are other pathways that S. degradans uses to break down cellulose, it is not very well understood how all of the pathways work together in cellulose metabolism (3).

The degradation of agar is only partially understood in S. degradans. What is known is that there are 5 identified agarases which are Aga50A, Aga50D, Aga86C, Aga86E, and Aga16B (2). All five of these are secreted and work together to break down agar using a beta-agarase pathway. Agar polymers are first cleaved into an oligosaccharide derivative and then processed into a disaccharide product (2). An unusual feature was found Aga16B and Aga86E. Both of these showed the presence of multiple 6 carbohydrate binding modules (CBM6) with Aga16B having two homologs of CBM6 and Aga86E having three (2). CBMs are common in carbohydrases but are extremely rare in agarases. In fact, only two other agarases were found to have CBMs (2).

Ecology

Saccharophagus degradans performs a vital role in the marine carbon cycle. It is part of an emerging group of bacteria that is responsible for the degradation of CPs produced by other organisms in the ocean. It was found to grow at an optimum of 30 C and pH of 7.5. It is unable to live without sea salt and requires an optimum of 3.5% (1). Since S. degradans has 10 distinct CP-degrading systems with more carbohydrases and accessory proteins than any marine bacterium studied so far (3), it is easily one of the most versatile CP degraders. This versatility helps keep the many different CPs from accumulating in the ocean. In the case of cellulose degradation, often a multitude of microorganisms are required. However, S. degradans can completely degrade cellulose by itself (3). This is important for places where S. degradans may be the only cellulose degrader.

Pathology

There are no known pathological characteristics of Saccharophagus degradans.

Application to Biotechnology

The enzymes which allow S. degradans to break down 10 different CPs are constantly being isolated and studied. As the human population continues to grow, more pressure is being put on food production. As a result of the increased production, agricultural, aquacultural, and algalcultural wastes are starting to become serious problems. Cellulose, chitin, and agar are the major waste products. Using S. degradans as a powerful bioremediation tool may help curb the increase in waste products. Also, CPs can be hydrolyzed into usuable feedstock. For many developing countries that have severe shortages of feedstock, research is being made into harnessing S. degradans’ hydrolyzing power (6).

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Rachel Larsen