Sneathia amnii: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 5: Line 5:


Have you ever wondered exactly what microbes are in your normal microbiota? The microorganisms within our normal microbiota live within us and remain with us every day! Bacteria of the genus Sneathia were isolated from blood cultures taken from obstetric patients with post-partum fever, two newborn children and a 100-year-old woman in 1995. The bacteria are Gram stain negative, anaerobic, rod-shaped bacteria are emerging as potential pathogens of the female reproductive tract (Eisenberg et al, 2018). The species Sneathia, which had been a part of the genus Leptotrichia prior to its reclassification, is a part of the normal microbiota of the genitourinary tracts of men and women. Sneathia have a significant role in obstetrics and the health of women’s reproductive systems. This bacteria is of particular concern for women because it most commonly inhabits the human vagina and poses risk, especially for those who are pregnant. Sneathia has been known to cause preterm delivery and is heavily present in the blood of newborn babies, but it doesn’t just stop there. They are also associated with numerous clinical conditions such as bacterial vaginosis, preeclampsia, miscarriages, post-partum bacteremia and some other invasive infections (Harwich et al, 2020). Sneathia species also exhibit a significant correlation with sexually transmitted diseases and cervical cancer. The limited forms of carbohydrates that S. amnii is able to metabolize include glucose, maltose, glycogen and glucosamine (Harwich et al, 2020). Due to the very fixed nutrient requirement of Sneathia, it is difficult to cultivate in the lab.  A consequence of this is that very is little known about its biology or its pathogenic capabilities. They are not able to ferment starch, mucin and mannose.  In order to learn more about how pathogenic Sneathia are in terms of pelvic inflammatory disease, more studies will need to be done. Pelvic inflammatory disease is an infection of particular concern for women because it effects the reproductive organs and can possibly lead to infertility or chronic pelvic pain.  
Have you ever wondered exactly what microbes are in your normal microbiota? The microorganisms within our normal microbiota live within us and remain with us every day! Bacteria of the genus Sneathia were isolated from blood cultures taken from obstetric patients with post-partum fever, two newborn children and a 100-year-old woman in 1995. The bacteria are Gram stain negative, anaerobic, rod-shaped bacteria are emerging as potential pathogens of the female reproductive tract (Eisenberg et al, 2018). The species Sneathia, which had been a part of the genus Leptotrichia prior to its reclassification, is a part of the normal microbiota of the genitourinary tracts of men and women. Sneathia have a significant role in obstetrics and the health of women’s reproductive systems. This bacteria is of particular concern for women because it most commonly inhabits the human vagina and poses risk, especially for those who are pregnant. Sneathia has been known to cause preterm delivery and is heavily present in the blood of newborn babies, but it doesn’t just stop there. They are also associated with numerous clinical conditions such as bacterial vaginosis, preeclampsia, miscarriages, post-partum bacteremia and some other invasive infections (Harwich et al, 2020). Sneathia species also exhibit a significant correlation with sexually transmitted diseases and cervical cancer. The limited forms of carbohydrates that S. amnii is able to metabolize include glucose, maltose, glycogen and glucosamine (Harwich et al, 2020). Due to the very fixed nutrient requirement of Sneathia, it is difficult to cultivate in the lab.  A consequence of this is that very is little known about its biology or its pathogenic capabilities. They are not able to ferment starch, mucin and mannose.  In order to learn more about how pathogenic Sneathia are in terms of pelvic inflammatory disease, more studies will need to be done. Pelvic inflammatory disease is an infection of particular concern for women because it effects the reproductive organs and can possibly lead to infertility or chronic pelvic pain.  


   
   

Revision as of 22:10, 29 May 2021

MicrobeWiki Page Assessment

Create a resource for other people to appreciate the amazing diversity of the microbial world! Demonstrate your knowledge of your microbe by creating a MicrobeWiki page using the scientific literature and reputable resources. Each section of your page must integrate course Learning Objectives (LO) to demonstrate your understanding of microbiology. Each section must have at least 2 references to the primary peer-reviewed literature and at least 1 reference to a reputable reference book. All references must be cited in the References section. Please remove the LO and the instructions from each section. You only need to put your text in the different sections.

Introduction

Have you ever wondered exactly what microbes are in your normal microbiota? The microorganisms within our normal microbiota live within us and remain with us every day! Bacteria of the genus Sneathia were isolated from blood cultures taken from obstetric patients with post-partum fever, two newborn children and a 100-year-old woman in 1995. The bacteria are Gram stain negative, anaerobic, rod-shaped bacteria are emerging as potential pathogens of the female reproductive tract (Eisenberg et al, 2018). The species Sneathia, which had been a part of the genus Leptotrichia prior to its reclassification, is a part of the normal microbiota of the genitourinary tracts of men and women. Sneathia have a significant role in obstetrics and the health of women’s reproductive systems. This bacteria is of particular concern for women because it most commonly inhabits the human vagina and poses risk, especially for those who are pregnant. Sneathia has been known to cause preterm delivery and is heavily present in the blood of newborn babies, but it doesn’t just stop there. They are also associated with numerous clinical conditions such as bacterial vaginosis, preeclampsia, miscarriages, post-partum bacteremia and some other invasive infections (Harwich et al, 2020). Sneathia species also exhibit a significant correlation with sexually transmitted diseases and cervical cancer. The limited forms of carbohydrates that S. amnii is able to metabolize include glucose, maltose, glycogen and glucosamine (Harwich et al, 2020). Due to the very fixed nutrient requirement of Sneathia, it is difficult to cultivate in the lab. A consequence of this is that very is little known about its biology or its pathogenic capabilities. They are not able to ferment starch, mucin and mannose. In order to learn more about how pathogenic Sneathia are in terms of pelvic inflammatory disease, more studies will need to be done. Pelvic inflammatory disease is an infection of particular concern for women because it effects the reproductive organs and can possibly lead to infertility or chronic pelvic pain.


Electron Micrographs of S. amnii. S. amnii were fixed to either glass cover slips or copper grids, and visualized by SEM (a) or TEM (b), respectively by Harwich Jr et al. (2012) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535699/


Gram stain of Sneathia amnii by Duployez et al. (2020). Gram stain from colonies on blood agar, image taken at magnification 1000x. Presence of long and short Gram-negative rods. https://reader.elsevier.com/reader/sd/pii/S1075996420301335?token=E22DB79E5100C93C86CD14DBA659C6A7B8C73FD251F2702FCB1FD5A4ADBB24B26E5A134903DB9E32EFA6815BE5CE4DEB

Classification

LO: Organisms are classified using a standard taxonomic rank.

  • Give the taxonomic rank in descending order of your organism.
Domain; Phylum; Class; Order; Family; Genus; Species 
  • Provide a link to the following pages specific to your organism
    • NCBI: Taxonomy
    • JGI:GOLD

Phylogenetic Relatedness

LO: The evolutionary relatedness of organisms is best reflected in phylogenetic trees.

  • Cite and link out to peer-reviewed scientific literature that constructs phylogenetic trees using either 16S rRNA, multiple housekeeping genes, or whole genomes.
  • Describe the genes and phylogenetic methods used to create the tree.
  • What is the closest relative of your identified isolate according to the phylogenetic tree you used?
  • Include a link to a figure of the most recently constructed phylogenetic tree with proper citation and a detailed description of the tree.
  • In the description include: the gene(s)/genomes used and the phylogenetic method used.

Ecological Habitat

LO: Microorganisms are ubiquitous and live in diverse and dynamic ecosystems.

LO: The survival and growth of any microorganism in a given environment depends on its metabolic characteristics.

  • Describe its habitat and contributions to the environment. Note that an organism’s environment might be in or on another organism (e.g. bacteria in insect digestive system)
  • Include a link to a photo of a representative habitat with a figure caption that explains what kind of habitat this is and where the habitat is found.
  • Where the genus is most commonly found
    • If it is found in the environment, what macroscopic “field marks” does it have (color, smell, etc…)
    • If found in clinical samples – what is a diagnostic test?
  • Describe the physical and chemical abiotic characteristics of the environment
    • Temperature, pH, oxygen, etc..

Significance to the Environment

LO: “Microbes are essential for life as we know it and the processes that support life” – how does your organism and your organisms’ metabolism support life on planet Earth?

LO: Human impact on the environment influences the evolution of microorganisms (e.g., emerging diseases and the selection of antibiotic resistance).

  • Describe how this microbe cycles nutrients in the environment. Note that an organism’s environment might be in or on another organism (e.g. bacteria in insect digestive system)
  • Include links to other MicrobeWiki pages on nutrient cycling or other reputable information on nutrient cycling geared toward the public (podcasts, blogs, gov or professional sites)
  • Are there human-induced changes to the environment that have influenced this microbe’s evolution, population numbers, or spread? (e.g. agriculture, clear-cutting/destruction of natural areas, greenhouse gasses, high nitrogen/phosphorous run-off, oil spills, overuse of antibiotics,...)

Ecological Lifestyle and Interactions

LO: “Microorganisms provide essential models that give us fundamental knowledge about life processes.”

LO: “Microorganisms are ubiquitious and live in diverse and dynamic ecosystems."

LO: “Microorganisms and their environment interact with and modify each other.”

LO: “Most bacterial in nature live in biofilm communities.”

  • Describe the organism’s lifestyle, the organisms it interacts with, and how these interactions influence their environment.
  • Name and describe the kind of lifestyle of the organism (free-living? host-associated? obligate? Facultative? Parasitic? Mutualistic? Saprophytic?)
    • If the organism is mutualistic or pathogenic, state what host it most commonly associates with
    • If parasitic – what disease does it cause and what are the symptoms?
    • If mutualistic – what cost/benefit does it receive from the host and what cost/benefit does it give the host?
    • If saprophytic, what kinds of organisms does it feed upon?
    • Does the lifestyle of the organism changes with the host or context? If so, you might select one type of lifestyle to focus on, but then mention the other associations in a few sentences.
  • Describe key groups of microbes that your microbe interacts or are associated with important processes found in this environment.
    • Link to other MicrobeWiki pages or other reputable resources where possible.
  • Describe biological interactions that might take place in this environment, using as many sections/subsections as you require.
    • Are there important biological interactions that are important in this environment?
    • Do these interactions influence microbial populations and their activities?
    • How do these interactions influence other organisms?

Significance to Humans

LO: “Microorganisms can interact with both human and nonhuman hosts in beneficial, neutral, and detrimental ways.”

LO: “Humans utilize (note: this is the correct way to use utilize!) and harness microorganisms and their products.”

  • Describe how this microbe has influenced human society now or in the past.
    • If your microbe is a pathogen, does the ecology and metabolism of the pathogen suggest how we can interrupt its interactions with the host?
  • If there is technology or product that this microbe is part of or could be a part of:
    • describe the technology
    • how this technology or product influences human lives.

Cell Structure

LO: Microbes have unique cell structures that can be targets for antibiotic, immunity, and phage infection.

LO: Microbes have specialized structures (e.g. flagella, endospores, and pili) that often confer critical capabilities.

Provide a physical and metabolic description of the organism. Are there special diagnostic media or methods to distinguish this microbe from close relatives?

  • Colony morphology (size, shape, texture, pigmentation, smell?, etc…)
  • Cell morphology
  • Gram type, if applicable
  • Motility
  • Any other important structures

Cell Metabolism

LO: “Microbes are essential for life as we know it and the processes that support life.” LO: “Microorganisms provide essential models that give us fundamental knowledge about life processes.” LO: Because the true diversity of microbial life is largely unknown, its effects and potential benefits have not been fully explored.

Provide a physical and metabolic description of the organism. Are there special diagnostic media or methods to distinguish this microbe from close relatives?

  • Optimal abiotic growth conditions (temperature, salinity, oxygen, UV)
  • Carbon growth sources
  • Other metabolic abilities
  • Any other unique abilities (e.g toxin production, antibiotic resistance, etc...)

.

Genome Structure, Content, and/or Gene Expression

LO: Genome structure and content provide insight into a microbe's evolutionary history, ecological niche, and interactions with hosts and other microbes.

LO: Mutations and horizontal gene transfer, with an immense variety of microenvironments, have selected for a huge diversity of microorganisms.

LO: The regulation of gene expression is influenced by external and internal molecular cues and/or signals.

LO: Cell genomes can be manipulated to alter cell function.

LO: Genetic variations can impact microbial functions (e.g. in biofilm formation, pathogenicity, and drug resistance).

Metrics

  • Genome size
  • % GC
  • number of chromosomes and/or plasmids?
  • Circular or linear?
  • Other interesting features?

Relevance

  • Why was this organism sequenced?
  • Where was this organism sequenced?
  • Provide a direct link to the sequenced genome
  • What does the genome tell us about this organism? Ie. What new insights do we have after it is sequenced?
  • Give an example of an interesting feature found in the genome (LGT, mutations, plasmids, antibiotic resistance, toxins, etc...).
  • Explain why this feature is important for the microbes’ survival or success.

Interesting Feature

LO: Mutations and horizontal gene transfer, with an immense variety of microenvironments, have selected for a huge diversity of microorganisms.

LO: Human impact on the environment influences the evolution of microorganisms (e.g., emerging diseases and the selection of antibiotic resistance).

LO: Because the true diversity of microbial life is largely unknown, its effects and potential benefits have not been fully explored.

Describe in detail one particularly interesting aspect of your organism.

  • Why is this detail interesting?
  • How does it help the organism survive?
  • How does this interesting feature influence the larger environment or other microbes?
  • How can this interesting feature be helpful to humans?
  • In ~3 sentences propose WHY more research and WHAT kind of new research should be done on this organism and others like it. Connect this to the learning objective about the importance of microbial diversity
  • If you have created a graphical abstract, meme, image, etc... about this organism and its interesting feature, include it here. You can put a creative commons copywrite it to control how other people use it: https://creativecommons.org/about/cclicenses/

References

Each section must have at least 2 references to the primary peer-reviewed literature and at least 1 reference to a reference book like Bergey’s Manual or resources available on the NCBI bookshelf. Also, link out to reputable blogs like Small Things Considered (https://schaechter.asmblog.org/schaechter/), MostlyMicrobes (http://www.mostlymicrobes.com/), Sarah’s Little World (https://sarahs-world.blog/), professional websites American Society for Microbiology (https://asm.org/browse-asm), Microbiology Society (https://microbiologysociety.org/), and podcasts like the many by ASM (https://asm.org/podcasts), This Podcast Will Kill You (https://thispodcastwillkillyou.com/), etc… These should also be cited in the reference section.

Is this a peer-reviewed journal? Check this partial list: https://www.openacessjournal.com/peer-reviewed-journals

Convert your References section to Vancouver format: BibGuru (https://www.bibguru.com/), PMID2cite (https://www.pmid2cite.com/)

Example references: Vancouver citation

Journal

Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500. https://doi.org/10.1099/00207713-50-2-489

Book

Surname Initials. Book title. Edition - if available: Publisher, place of publication; Year .

Books with Editors

Beers MH, Porter RS, Jones TV, Kaplan JL, Berkwits M, editors. The Merck manual of diagnosis and therapy. 18th ed. Whitehouse Station (NJ): Merck Research Laboratories; 2006.

Authored chapter in edited publication;;

Glennon RA, Dukat M. Serotonin receptors and drugs affecting serotonergic neurotransmission. In: Williams DA, Lemke TL, editors. Foye's principles of medicinal chemistry. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002.

Electronic

World Health Organization (WHO). Mortality country fact sheet 2006 [internet]. Geneva: WHO; 2006. Available from: www.who.int/whosis/mort_emro_pak_pakistan.pdf


Edited by <your name>, a @MicrobialTowson student of Dr. Anne M. Estes at Towson University. Template adapted from templates by Angela Kent, University of Illinois at Urbana-Champaign and James W. Brown, Microbiology, NC State University.