Difference between revisions of "Sodalis glossinidius"

From MicrobeWiki, the student-edited microbiology resource
Line 27: Line 27:
  
  
[[Image:Tsetse_haemocyte_and_S_glossinidius.JPG|frame|none|Symbiotic lifestyle of ''S. glossinidius'' (purple) in the haemocyte of the tsetse fly. Image courtesy of Prof. Sue Welburn, University of Edinburgh.]]
+
[[Image:Tsetse_haemocyte_and_S_glossinidius.JPG|frame|right|Symbiotic lifestyle of ''S. glossinidius'' (purple) in the haemocyte of the tsetse fly. Image courtesy of Prof. Sue Welburn, University of Edinburgh.]]
  
  

Revision as of 10:48, 29 August 2007

A Microbial Biorealm page on the genus Sodalis glossinidius

Classification

Higher order taxa

Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae

Species

Sodalis glossinidius

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.


Symbiotic lifestyle of S. glossinidius (purple) in the haemocyte of the tsetse fly. Image courtesy of Prof. Sue Welburn, University of Edinburgh.


Sodalis glossinidius is one of three endosymbionts of the tsetse fly. [3]

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Sodalis glossinidius does not cause any known diseases

Sodalis glossinidius, a maternally transmitted endosymbiont of tsetse flies, maintains two phylogenetically distinct type-III secretion systems encoded by chromosomal symbiosis regions designated SSR-1 and SSR-2. Although both symbiosis regions are closely related to extant pathogenicity islands with similar gene inventories, SSR-2 has undergone novel degenerative adaptations in the transition to mutualism. Notably, SSR-2 lacks homologs of genes found in SSR-1

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

1. "Sodalis glossinidius". NCBI Taxonomy Browser. 26 August 2007. [1]

2. Akman, L., Rio, R., Beard, C., and Aksoy, S. “Genome Size Determination and Coding Capacity of Sodalis glossinidius, an Enteric Symbiont of Tsetse Flies, as Revealed by Hybridization to Escherichia coli Gene Arrays.” Journal of Bacteriology. 2001. Volume 183.15 p. 4517-4525.[2]

3. Dale, C., Jones, T., and Pontes, M. "Degenerative Evolution and Functional Diversification of Type-III Secretion Systems in the Insect Endosymbiont Sodalis glossinidius." Molecular Biology and Evolution. 2005. Volume 22.3 p. 758-766. [3]

4. Darby, A., Lagnel, J., Matthew, C., Bourtzis, K., Maudlin, I., and Welburn, S. "Extrachromosomal DNA of the Symbiont Sodalis glossinidius." Journal of Bacteriology. 2005. Volume 187.14 p. 5003-5007. [4]


[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by Janet Melnyk, student of Rachel Larsen