Sporosarcina ureae: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
(Created page with "{{Uncurated}} ==Classification== '''Domain:''' Bacteria '''Phylum:''' Firmicutes '''Class:''' Bacilli '''Order:''' Bacillales '''Family:''' Planococcaceae '''Genus:'...")
 
No edit summary
Line 24: Line 24:


==Description and Significance==
==Description and Significance==
The cells of ''S. ureae'' are circular, or coccoid in shape, which is somewhat surprising given its close relation to the ''Bacillus'' genus. habitat, etc  and why you think it is important.
''S. ureae'' is a motile, Gram-positive sporeforming bacteria which is coccoid in shape,[1] its being a coccus is somewhat surprising given its close relation to the ''Bacillus'' genus, members of which are rod-shaped. ''S. ureae'' is distributed across the globe and is typically found in fertile soils and is especially prevalent in those containing high levels of urea. Its ability to grow in the presence high amounts of urea is due to its ability to convert urea in soil to ammonia through the production of urease.[2] The ability for ''S. ureae'' to covert urea to ammonia offers a promising means by which to decrease fertilizer use in agricultural areas. This could be accomplished by rotating a plot of land from being an animal pasture, in which large amounts of urea would be deposited, and then being converted into a field the next year, at which time ''S. ureae'' would have converted the urea into ammonia for the new plants to use.
 
==Genome Structure==
==Genome Structure==
Describe the size and content of the genome. How many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?
The genome of ''S. ureae'' was recently sequenced. The genome contains 3412428 base pairs and is circular in shape.[3] The genome has been found to have a GC content of between 40.0-41.5mol%.[2] Among the better understood elements of ''S ureae's'' genome is the SpoIIIE gene which is necessary for the formaton of spores. Interestingly enough, inserting this gene into ''B. subtilis'' mutants which cannot form spores reverses the phenotype, allowing them to produce spores.[4]




==Cell Structure, Metabolism and Life Cycle==
==Cell Structure, Metabolism and Life Cycle==
Interesting features of cell structure; how it gains energy; what important molecules it produces.
''S. ureae'' tends to form clusters--or sarcinae--of four or more cells. Colonies are circular, gray and opaque and slightly convex. The species is heterotrophic and explicitly aerobic.[2] The organis can grow in a normal nutrient broth, however it performs much better when in the presence of urea, which is likely due to the ease with which glutamic acid and glutamine can be produced from ammonia or ammonium if the medium is alkaline.[5]




==Ecology and Pathogenesis==
==Ecology and Pathogenesis==
Habitat; symbiosis; biogeochemical significance; contributions to environment.<br>
''S. ureae'' is widely distributed in soils, with fertile soils containing as many as 10000 sarcinae/g [6] While ''S. ureae'' is best adapted to a neural habitat, it is tolerant to a pH as high as 10. While ''S. ureae'' does not have a specific symbiotic relationship per se, its conversion of urea to ammonia is most likely beneficial most if not all plant life where it is found, as urea can be toxic to plants.[7] In a biogeochemical and environmental sense, ''S. ureae'' serves an important role in preventing urea levels from becoming too high in an area, permitting continued inhabitance by other species.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.<br><br>
 


==References==
==References==
[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "''Palaeococcus ferrophilus'' gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". ''International Journal of Systematic and Evolutionary Microbiology''. 2000. Volume 50. p. 489-500.]
1. Buchanan, R.E., and Gibbons, N.E., Eds. (1974) Bergey's Manual of Determinative Bacteriology, 8th ed., Williams and Wilkins Co., Baltimore, Md.
 
2. Claus, D., Fritze, D., Kocur, M., (2006) Genera related to the genus Bacillus–Sporolactobacillus, Sporosarcina, Planococcus, Filibacter and Caryophanon. The Prokaryotes , Vol. 4, 3rd edn (Dworkin M Falkow S Rosenberg E Schleifer KH Stackebrandt E, eds), pp. 631–653. Springer, New York, NY.
3. Nucleotide [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [2017]. Accession No. NZ_CP015109.1, Sporosarcina ureae strain P17a, complete genome. [cited 2018 April, 14]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP015109.1
4. Chary, V. K. & Piggot, P. J. Postdivisional synthesis of the Sporosarcina ureae DNA translocase SpoIIIE either in the mother cell or in the prespore enables Bacillus subtilis to translocate DNA from the mother cell to the prespore. J. Bacteriol. 185, 879–886 (2003).
5. G. Mörsdorf, H. Kaltwasser: Ammonium assimilation in Proteus vulgaris, Bacillus pasteurii, and Sporosarcina ureae. In: Archives of microbiology. Band 152, Nummer 2, 1989, S. 125–131, ISSN 0302-8933. PMID 2570557.
6. Pregerson, B.S. (1973). "The distribution and physiology Sporosarcina ureae". Master dissertation, California State University, Northridge.
7. Cooke, I.J. Toxic effect of urea on plants: Damage to plant roots caused by urea and anhydrous ammonia (1962) Nature, 194 (4835), pp. 1262-1263.
==Author==
==Author==
Page authored by Ben Bonson and Joseph Bernth, students of Prof. Jay Lennon at IndianaUniversity.
Page authored by Ben Bonson and Joseph Bernth, students of Prof. Jay Lennon at IndianaUniversity.


<!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]]
<!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]]

Revision as of 03:20, 15 April 2018

This student page has not been curated.

Classification

Domain: Bacteria

Phylum: Firmicutes

Class: Bacilli

Order: Bacillales

Family: Planococcaceae

Genus: Sporosarcina

Species

NCBI: Taxonomy

Sporosarcina ureae

Description and Significance

S. ureae is a motile, Gram-positive sporeforming bacteria which is coccoid in shape,[1] its being a coccus is somewhat surprising given its close relation to the Bacillus genus, members of which are rod-shaped. S. ureae is distributed across the globe and is typically found in fertile soils and is especially prevalent in those containing high levels of urea. Its ability to grow in the presence high amounts of urea is due to its ability to convert urea in soil to ammonia through the production of urease.[2] The ability for S. ureae to covert urea to ammonia offers a promising means by which to decrease fertilizer use in agricultural areas. This could be accomplished by rotating a plot of land from being an animal pasture, in which large amounts of urea would be deposited, and then being converted into a field the next year, at which time S. ureae would have converted the urea into ammonia for the new plants to use.

Genome Structure

The genome of S. ureae was recently sequenced. The genome contains 3412428 base pairs and is circular in shape.[3] The genome has been found to have a GC content of between 40.0-41.5mol%.[2] Among the better understood elements of S ureae's genome is the SpoIIIE gene which is necessary for the formaton of spores. Interestingly enough, inserting this gene into B. subtilis mutants which cannot form spores reverses the phenotype, allowing them to produce spores.[4]


Cell Structure, Metabolism and Life Cycle

S. ureae tends to form clusters--or sarcinae--of four or more cells. Colonies are circular, gray and opaque and slightly convex. The species is heterotrophic and explicitly aerobic.[2] The organis can grow in a normal nutrient broth, however it performs much better when in the presence of urea, which is likely due to the ease with which glutamic acid and glutamine can be produced from ammonia or ammonium if the medium is alkaline.[5]


Ecology and Pathogenesis

S. ureae is widely distributed in soils, with fertile soils containing as many as 10000 sarcinae/g [6] While S. ureae is best adapted to a neural habitat, it is tolerant to a pH as high as 10. While S. ureae does not have a specific symbiotic relationship per se, its conversion of urea to ammonia is most likely beneficial most if not all plant life where it is found, as urea can be toxic to plants.[7] In a biogeochemical and environmental sense, S. ureae serves an important role in preventing urea levels from becoming too high in an area, permitting continued inhabitance by other species.


References

1. Buchanan, R.E., and Gibbons, N.E., Eds. (1974) Bergey's Manual of Determinative Bacteriology, 8th ed., Williams and Wilkins Co., Baltimore, Md.
2. Claus, D., Fritze, D., Kocur, M., (2006) Genera related to the genus Bacillus–Sporolactobacillus, Sporosarcina, Planococcus, Filibacter and Caryophanon. The Prokaryotes , Vol. 4, 3rd edn (Dworkin M Falkow S Rosenberg E Schleifer KH Stackebrandt E, eds), pp. 631–653. Springer, New York, NY.
3. Nucleotide [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [2017]. Accession No. NZ_CP015109.1, Sporosarcina ureae strain P17a, complete genome. [cited 2018 April, 14]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP015109.1
4. Chary, V. K. & Piggot, P. J. Postdivisional synthesis of the Sporosarcina ureae DNA translocase SpoIIIE either in the mother cell or in the prespore enables Bacillus subtilis to translocate DNA from the mother cell to the prespore. J. Bacteriol. 185, 879–886 (2003).
5. G. Mörsdorf, H. Kaltwasser: Ammonium assimilation in Proteus vulgaris, Bacillus pasteurii, and Sporosarcina ureae. In: Archives of microbiology. Band 152, Nummer 2, 1989, S. 125–131, ISSN 0302-8933. PMID 2570557.
6. Pregerson, B.S. (1973). "The distribution and physiology Sporosarcina ureae". Master dissertation, California State University, Northridge.
7. Cooke, I.J. Toxic effect of urea on plants: Damage to plant roots caused by urea and anhydrous ammonia (1962) Nature, 194 (4835), pp. 1262-1263.

Author

Page authored by Ben Bonson and Joseph Bernth, students of Prof. Jay Lennon at IndianaUniversity.