Talk:Shewanella oneidensis MR-1: Background and Applications

From MicrobeWiki, the student-edited microbiology resource
Revision as of 01:21, 25 April 2011 by OdioC (talk | contribs)


Figure 1. Shewanella onedensis MR-1 growing on hematite. Shewanella are gram-negative, proteobacteria that are facultative anaerobes and can respire on a tremendous variety of inorganic and organic electron acceptors. One such electron acceptor is Fe2O3, which is commonly found in the clay hematite. (Photo from Oak Ridge National Laboratory;

The genus Shewanella consists of gram-negative proteobacteria that are typically rod shaped, 2-3 μm in length and 0.4-0.7 μm in diameter (Fig 1). These facultative anaerobes are often found in marine sediments, and can swim with the aid of a single polar flagellum (Venkateswaran et al., 1999). Since the modern characterization Shewanella in 1988, DNA:DNA hybridization and 16S rRNA sequencing has been used to identify more than 40 distinct species. The features that characterize this genus include psychrotolerance, mild halophilicity, and the capacity to reduce an unparalleled array of inorganic and organic compounds for respiration (Gralnick et al., 2007). Their capacity to respire on various metals as well as their production of endogenous hydrocarobons has ignited tremendous interest in the characterization and potential applications of these microorganisms.

Brief History

Shewanella was originally identified in 1931 as one of multiple species of bacteria growing on putrid butter (Hammer, 1931). It was first classified as part of the genus Achromobacter and was reclassified multiple times on the basis of its polar flagella, its status as a non-fermentive marine bacteria, and the guanine/ cystine content (% GC) of its DNA (Gralnick et al., 2007). In 1985, 5S rRNA sequencing was used support an entirely new name for the genus, Shewanella. The name was given as a tribute to Dr. James M. Shewan for his work in fisheries microbiology (MacDonell et al., 1985).

Model Species of the Genus Shewanella: Shewanella oneidensis MR-1

In 1988, a group of scientists became curious about the unexplained levels of reduced manganese (Mn2+) present in New York’s largest freshwater lake, Lake Oneida (Fig 2). In nature, manganese generally exists in its oxidized form (Mn4+), and thus the scientists hypothesized that some biological process was reducing the manganese. Upon experimentation, they discovered a species of Shewanella that respires by transferring electrons to Mn4+. Interestingly, oxidized manganese is insoluble, which indicated that the bacteria have a way to transfer electrons to metal outside of their cells for respiration. After rRNA sequencing, the bacteria was characterized as a Shewanella , and the species was named Shewanella oneidensis MR-1 (“manganese reducer”) after the lake in which it was discovered (Slonczewski et al, 2011). This MR-1 species was the first shewanella to genome to be sequenced, and thus it has become a model system for the study of the genus (Gralnick et al., 2007).

Mechanism of Action for Metal Reduction: Biofilm Formation

The ability to respire on insoluble substances is a true biological feat that scientists have begun to deeply investigate. The first step to successful reduction of extracellular metals is the formation of biofilms by shewanella on the metal oxide. Biofilms facilitate close contact between the bacteria and the oxidized metal (Thormann et al., 2004). A study by Thormann et al. (2004) investigated mechanism of biofilm formation by Shewanella oneidensis MR-1 on glass surfaces. They reported that the microbes first attach and grow laterally until they cover the majority of the surface available to them. The Shewanella then begin to develop the biofilm vertically creating towering structures (Fig 3). Using mutagenesis experiments, the scientists discovered that the microbes do not need to swim in order to attach to the surface. The swimming motility is actually critical to formation of the three dimensional structures. Instead, the biosynthesis of a type IV pilus (Fig 4A) is crucial to microbe to surface adhesion and the ability to retract pili (Fig 4B) is required for lateral coverage by the biofilm. The scientists also reported that the Shewanella grow more robust biofilms, with greater microbe to surface interactions, when nutrient levels are poor (Fig 5). This probably happens because when nutrient levels are high in the media and oxygen is available (as was the case in this experiment), the organisms can simply catabolize the nutrients aerobically rather than investing energy in the formation of a biofilm for low energy-yielding respiration. However, the typically anaerobic natural environments of Shewanella encourage biofilm formation, which allows them to thrive on nutrients that most other organisms cannot use.

Section 3

Include some current research in each topic, with at least one figure showing data.


Overall paper length should be 3,000 words, with at least 3 figures.


[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Joan Slonczewski for BIOL 238 Microbiology, 2009, Kenyon College.