Tarsier Evolution: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
No edit summary
Line 23: Line 23:
==Genetics / Evolution==
==Genetics / Evolution==
<b>Phylogeny</b><br>
<b>Phylogeny</b><br>
Tarsiers have traditionally been considered prosimians. Prosimians, members of the suborder Prosimii, have rhinariums (wet, snout-like noses with vertical nostril slits), claws, and tails. Generally, their physical characteristics are geared towards a nocturnal life; their eyes have tapetum lucidum and they have a very developed sense of smell. Tarsiers, however, lack claws, a tapetum lucidum, and a rhinarium. This lack of shared traits has led taxonomists to doubt the relationship between tarsiers and prosimians, leading some to suggest that tarsiers should be grouped with the suborder haplorhini (prosimians are members of the suborder strepsirrhini). The great phylogeny debate led to many genetic studies of the tarsier. For example, the Alu repeats of the tarsier genome were studied and found to indicate that tarsiers form a sister clade with haplorhines rather than with other prosimians. This new phylogeny is based on derived traits, particularly regarding the anatomy of the postorbital region. Strepsirrhines have a postorbital bar, while haplorhines have a postorbital septum - Tarsiers are again grouped with the haplorhines based on this trait. The phylogenetic debate boils down to prioritizing traditional, Linnaean taxonomy or focusing on more contemporary ideas of cladistics. While many genetic studies have attempted to resolve the taxonomic debate, the lingering uncertainty makes it hard to study the effects of habitat destruction on tarsiers or label their conservation status. <br>
<b>Behavioral and Physical Adaptations</b><br>
Tarsiers have multiple fascinating adaptations that enhance their fitness. Their extremely long tarsal bones, which give them their name, allow them to be efficient vertical clingers and leapers. Many different physical adaptations support this mode of locomotion, and can be traced back to ancestral tarsier species. Their massive eyes, lacking a tapetum lucidum, aid in their night vision; a helpful adaptation to support their nocturnal lifestyle. Instead, they have a fovea, which could be an indication that their ancestors were diurnal. Their large and mobile ears support an incredible range of hearing, equipping them for hunting at night. Some species of tarsier can hear above 90 kHz, an adaptation that enhances their nocturnal lifestyle. Tarsiers are fairly unique in their diet; they are solely carnivorous and eat small terrestrial vertebrates as well as insects. <br>
Tarsiers were originally thought to be almost exclusively solitary animals, but recent observations of their social behaviors have adjusted that view. Despite the challenges imposed by the tariser’s small size, lack of eyeshine, fast movement, and nocturnal nature, researchers have been able to observe them and draw new conclusions about their social lives. Using radio telemetry, it is now understood that tarsiers live in monogamous pairs and are quite territorial. Males seek to protect territory with good sleeping trees - those with the best trees often find themselves with multiple mates, so tarsiers are not exclusively monogamous.


Sample citations: <ref>[http://www.plosbiology.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pbio.1000005&representation=PDF Hodgkin, J. and Partridge, F.A. "<i>Caenorhabditis elegans</i> meets microsporidia: the nematode killers from Paris." 2008. PLoS Biology 6:2634-2637.]</ref>
Sample citations: <ref>[http://www.plosbiology.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pbio.1000005&representation=PDF Hodgkin, J. and Partridge, F.A. "<i>Caenorhabditis elegans</i> meets microsporidia: the nematode killers from Paris." 2008. PLoS Biology 6:2634-2637.]</ref>

Revision as of 14:25, 29 November 2021

Introduction

Tarsiers are small, elusive primates that are native to Southeast Asia and the Philippines. The animals of the genus Tarsius are known for their extremely large ears and eyes, their carnivorous diet, and their long tarsal bones (the source of their name). The number of Tarsier species is unclear, but a range of 6-13 have been reported. At most, a tarsier could weigh 150g, while a pygmy tarsier might weigh as little as 57g. They are vertical clingers and leapers; their tails and padded digits aid them in this locomotive style. Their notable eyes are massive, outweighing their brains and lacking a tapetum lucidum, or "eyeshine." This keeps their location hidden, since there is no eye reflection to betray their position to predators. Their strange eyes also lack movement, but their owl-like necks are capable of 180 degrees of rotation to accommodate this. Tarsiers are nocturnal, and many of their physical adaptations support their sleep habits; mostly their incredible hearing. Their vision isn’t perfectly adapted to being nocturnal, since they have a fovea rather than the aforementioned tapetum lucidum. The phylogenetic placement of the genus Tarsius is widely debated, and many researchers have undertaken genetic experiments to identify their position in relation to other primates.

Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.[1].


At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.
Closed double brackets: ]]

Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+



I don't know

Genetics / Evolution

Phylogeny
Tarsiers have traditionally been considered prosimians. Prosimians, members of the suborder Prosimii, have rhinariums (wet, snout-like noses with vertical nostril slits), claws, and tails. Generally, their physical characteristics are geared towards a nocturnal life; their eyes have tapetum lucidum and they have a very developed sense of smell. Tarsiers, however, lack claws, a tapetum lucidum, and a rhinarium. This lack of shared traits has led taxonomists to doubt the relationship between tarsiers and prosimians, leading some to suggest that tarsiers should be grouped with the suborder haplorhini (prosimians are members of the suborder strepsirrhini). The great phylogeny debate led to many genetic studies of the tarsier. For example, the Alu repeats of the tarsier genome were studied and found to indicate that tarsiers form a sister clade with haplorhines rather than with other prosimians. This new phylogeny is based on derived traits, particularly regarding the anatomy of the postorbital region. Strepsirrhines have a postorbital bar, while haplorhines have a postorbital septum - Tarsiers are again grouped with the haplorhines based on this trait. The phylogenetic debate boils down to prioritizing traditional, Linnaean taxonomy or focusing on more contemporary ideas of cladistics. While many genetic studies have attempted to resolve the taxonomic debate, the lingering uncertainty makes it hard to study the effects of habitat destruction on tarsiers or label their conservation status.

Behavioral and Physical Adaptations
Tarsiers have multiple fascinating adaptations that enhance their fitness. Their extremely long tarsal bones, which give them their name, allow them to be efficient vertical clingers and leapers. Many different physical adaptations support this mode of locomotion, and can be traced back to ancestral tarsier species. Their massive eyes, lacking a tapetum lucidum, aid in their night vision; a helpful adaptation to support their nocturnal lifestyle. Instead, they have a fovea, which could be an indication that their ancestors were diurnal. Their large and mobile ears support an incredible range of hearing, equipping them for hunting at night. Some species of tarsier can hear above 90 kHz, an adaptation that enhances their nocturnal lifestyle. Tarsiers are fairly unique in their diet; they are solely carnivorous and eat small terrestrial vertebrates as well as insects.
Tarsiers were originally thought to be almost exclusively solitary animals, but recent observations of their social behaviors have adjusted that view. Despite the challenges imposed by the tariser’s small size, lack of eyeshine, fast movement, and nocturnal nature, researchers have been able to observe them and draw new conclusions about their social lives. Using radio telemetry, it is now understood that tarsiers live in monogamous pairs and are quite territorial. Males seek to protect territory with good sleeping trees - those with the best trees often find themselves with multiple mates, so tarsiers are not exclusively monogamous.


Sample citations: [1] [2]

A citation code consists of a hyperlinked reference within "ref" begin and end codes.

[3]

Microbiome

Include some current research, with a second image.

Conclusion

Overall text length (all text sections) should be at least 1,000 words (before counting references), with at least 2 images.

Include at least 5 references under References section.

References

  1. Hodgkin, J. and Partridge, F.A. "Caenorhabditis elegans meets microsporidia: the nematode killers from Paris." 2008. PLoS Biology 6:2634-2637.
  2. Bartlett et al.: Oncolytic viruses as therapeutic cancer vaccines. Molecular Cancer 2013 12:103.
  3. Lee G, Low RI, Amsterdam EA, Demaria AN, Huber PW, Mason DT. Hemodynamic effects of morphine and nalbuphine in acute myocardial infarction. Clinical Pharmacology & Therapeutics. 1981 May;29(5):576-81.


Edited by [M. Kate Ford], student of Joan Slonczewski for BIOL 116 Information in Living Systems, 2021, Kenyon College.