The Outbreak of Canine Parvovirus in North America

From MicrobeWiki, the student-edited microbiology resource
Revision as of 23:23, 26 April 2018 by Tosaris1 (talk | contribs)
Jump to: navigation, search
This is a curated page. Report corrections to Microbewiki.

Section

Photographic print of Canine Parvovirus (CPV-2) viral capsid model. Courtesy of University of Wisconsin-Madison [2].


By Gwen Tosaris



The Canine Parvovirus (CPV) is a single-stranded DNA virus, non-enveloped, that leads to the deadly enteric infection of canines via direct contact. [1]This highly contagious pathogen has the ability to spread within 3 to 7 days to dogs in close vicinities. CPV outbreaks have been noted globally in several places with no previous reports. The outbreak of this virus in Alaska of 2016 leads to the question of how the discovery and prevention of the deadly disease may aid in the further prevention and treatment of this disease in North America. [1]
Sample citations: [2] [3]

A citation code consists of a hyperlinked reference within "ref" begin and end codes.

Structure and Significance

The canine parvovirus strain 2 (CPV-2), or “Parvo,” is a single-stranded DNA virus, non-enveloped, that leads to a deadly enteric infection in canines. Reported globally, this virus has been sighted in New Zealand, Australia, Asia, Europe, North America, and the Caribbean and continues to kill thousands of dogs each year [1]. The first sighting of the virus surfaced during the late 1970s in Europe. The disease led to an epidemic that lasted from 1978-1979 until a vaccine was formed and the outbreak subsided. When the virus was found through electron microscopy, scientists named it CPV-2 as it held close relation to CPV-1 — a viral disease that is now placed in an entirely different category. Canine parvovirus, group II, belongs to the Parvovirus genus and the Parvoviridae family. Its higher classification is the Protoparvovirus [2]. The virulent disease may cause gastroenteritis (hemorrhagic enteritis), myocarditis, and lymphopenia in canines, among several other diseases systemically [3]. Three structural proteins, VP1, VP2, and VP3, along with NS1 and NS2, two non-structural proteins, assemble the parvovirus. The proteins come together to form an icosahedral virus, meaning that the virus contains identical subunits to form a symmetrical, equilateral triangle [1]. VP2 protein is a main structural component of CPV-2 and maintains an eight-stranded, antiparallel β-barrel. The remainder of the VP2 protein is composed of loops that attach to the β-barrel [1]. This strain originated from Feline Panleukopenia (FPLV), also known as “Feline Distemper,” a contagious and fatal disease prevalent in felines (1). FPLV, similarly to CPV-2, is known for attacking and dividing in rapidly dividing cells (1). FPLV is not as common due to the widespread use of the vaccine (7). Emerging from two or more mutations of FPLV, CPV-2 mutated so that the virus could infect canine hosts. Studying the effects of canine parvovirus aids in the further development of vaccines and other forms of prevention against this pathogenic disease. Understanding the evolution and developments of this disease initiates the protection and safety of all individuals, as it may prevent future outbreaks. Canine parvovirus is a deadly disease that requires aggressive treatment if contracted, and thus deserves the attentive research and study to keep animals and humans safe. Although it has not been noted to develop in humans, variants of this disease may one day reach the potential to do so, making the study and maintenance of CPV essential. Not only does studying the disease raise awareness, but it also improves past health concerns and keeps canine populations safe from exposure.

Every point of information REQUIRES CITATION using the citation tool shown above.

Symptoms and Mode of Transmission

Include some current research, with at least one figure showing data.

Drawing of microscopic epithelial cell in the gastrointestinal tract. Crypt intestinal gland involved in reproduction of new cells that migrate upward from the gland into the lumen. [3].

New Developments in CPV-2

Include some current research, with at least one figure showing data.

Virus isolation shown without and without (+/-) VN antibodies. Feline subjects inoculated with reference FPLV, CPV-2a and CPV-2c. Blood samples taken at the time of inoculation.[4].

Diagnosis, Treatment and Immunization

Outbreaks in St. Kitts and Alaska

VP2 gene location sequencing alignment of two dog communities, Parvo6 and Parvo9. Parvo6 and Parvo9 chosen to compare with reference VP2 amino acid structure. Analysis of 18 amino acids at each subtype revealed similarities between the two communities with canine parvovirus. 426aa position determines variability of CPV virus. [5].

13337 2010 7 Fig1 HTML.jpg

Dog exposed to canine parvovirus. Intravenous and subcutaneous drip sets hydrating dog. [6].

Public Health and Conclusion

References

  1. [1] Parker, J. and Murphy, M. "Investigation of a Canine Parvovirus Outbreak using Next Generation Sequencing." 2017. Scientific Reports. doi:10.1038/s41598-017-10254-9
  2. Hodgkin, J. and Partridge, F.A. "Caenorhabditis elegans meets microsporidia: the nematode killers from Paris." 2008. PLoS Biology 6:2634-2637.
  3. Bartlett et al.: Oncolytic viruses as therapeutic cancer vaccines. Molecular Cancer 2013 12:103.

[1] [2] [3]



Authored for BIOL 238 Microbiology, taught by Joan Slonczewski, 2018, Kenyon College.