Thermobifida fusca: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 15: Line 15:


==Genome structure==
==Genome structure==
Describe the size and content of the genomeHow many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?
''Thermobifida fusca'' “has a single circular chromosome of 3,642,249 bp predicted to encode 3,110 proteins and 65 RNA species with a coding density of 85%” (4).  There are also other enzymes such as glycosyl hydrolases as well as cellulases and xylanases that are necessary for the degradation of plant cell walls (4).  ''T. fusca'' has a 67.5% G-C content which is expected for an organism that can survive in high temperatures and a wide pH range from 4 to 10 (2).
Does it have any plasmids?  Are they important to the organism's lifestyle?
 
''Bacillus Licheniformis'' is a Gram positive, thermophillic bacterium. Its optimal growth temperature is 50°C, but it can also survive at much higher temperatures. Its optimal temperature for
 


==Cell structure and metabolism==
==Cell structure and metabolism==

Revision as of 23:26, 5 June 2007

Classification

Higher order taxa

cellular organisms; Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales; Streptosporangineae; Nocardiopsaceae; Thermobifida fusca

Genus

Thermobifida

Description and significance

Thermobifida fusca, formerly known as Thermomonaspora fusca, is a rod shaped, thermophilic organism found in decaying organic matter and is a major degrader of plant cell wall (1, 2). Its preferred habitat are compost heaps, rotting hay, manure piles, or mushroom growth medium because these are self-heated organic materials that can reach Thermobifida fusca’s growth temperature of 55ºC (2). The genus Thermobifida comprises of 2 members, the other being Thermobifida alba (1). Both members of the genus are acid fast, Gram-positive aerobic organisms (1). It is important to map out the entire genome of this organism because of its biotechnological uses. The organism produces multiple extracellular enzymes including cellulases that are responsible for the decomposition of cellulose and lignocellulose residues, which is important for the breakdown of agricultural and urban wastes (1).

Genome structure

Thermobifida fusca “has a single circular chromosome of 3,642,249 bp predicted to encode 3,110 proteins and 65 RNA species with a coding density of 85%” (4). There are also other enzymes such as glycosyl hydrolases as well as cellulases and xylanases that are necessary for the degradation of plant cell walls (4). T. fusca has a 67.5% G-C content which is expected for an organism that can survive in high temperatures and a wide pH range from 4 to 10 (2).

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.


Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.


Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.


Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?


Current Research

Enter summaries of the most recent research here--at least three required


References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.


Edited by Michael Zhang, student of Rachel Larsen and Kit Pogliano at UCSD.

NCBI: Taxonomy