Tropical Rainforest: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 2: Line 2:
[[Image:Rainforest.jpg|thumb|300px|right|]]
[[Image:Rainforest.jpg|thumb|300px|right|]]


The tropical rainforest is a biome located across the earth on land on and around the equator. It has the highest biodiversity of all the earth's ecosystems, both in flora and fauna as well as microbes. This high diversity is due to the optimal growing conditions at equatorial locations: Abundant rainfall and warm temeratures, as well as intense sunlight. There is no seasonality in the rainforest(meaning it is evergreen) so the native flora have evolved their own flowering and fruiting seasons.  
The tropical rainforest is a biome located across the earth on land on and around the equator. It has the highest biodiversity of all the earth's ecosystems, both in flora and fauna as well as microbes. This high diversity is due to the optimal growing conditions at equatorial locations: Abundant rainfall and warm temperatures, as well as intense sunlight. There is no seasonality in the rainforest(meaning it is evergreen) so the native flora have evolved their own flowering and fruiting seasons.  
Although sunlight is intense, the lower levels of the rainforest are highly lacking in it due to the thick canopy layer blocking out the sky. As a result, forest floor conditions are dark and moist, which is the optimum condition for decomposition. Nutrient cycling is extremely vital in the rainforest, and because microbes drive nutrient cycling, they are key to sustaining this ecosystem. The huge biodiversity of bacteria and fungi in the rainforest is not due to nutrient rich soils. In fact, the rainforest's soils are quite nutrient poor. What powers the recycling in this ecosystem is the constant thick layer of leaf litter atop the forest floor. This is where the decomposition occurs, and is the home for a wide range of microorganisms like bacteria, fungi, and even protozoa in all different shapes and sizes.
Although sunlight is intense, the lower levels of the rainforest are highly lacking in it due to the thick canopy layer blocking out the sky. As a result, forest floor conditions are dark and moist, which is the optimum condition for decomposition. Nutrient cycling is extremely vital in the rainforest, and because microbes drive nutrient cycling, they are key to sustaining this ecosystem. The huge biodiversity of bacteria and fungi in the rainforest is not due to nutrient rich soils. In fact, the rainforest's soils are quite nutrient poor. What powers the recycling in this ecosystem is the constant thick layer of leaf litter atop the forest floor. This is where the decomposition occurs, and is the home for a wide range of microorganisms like bacteria, fungi, and even protozoa in all different shapes and sizes.



Revision as of 08:22, 13 April 2010

Introduction

Rainforest.jpg

The tropical rainforest is a biome located across the earth on land on and around the equator. It has the highest biodiversity of all the earth's ecosystems, both in flora and fauna as well as microbes. This high diversity is due to the optimal growing conditions at equatorial locations: Abundant rainfall and warm temperatures, as well as intense sunlight. There is no seasonality in the rainforest(meaning it is evergreen) so the native flora have evolved their own flowering and fruiting seasons. Although sunlight is intense, the lower levels of the rainforest are highly lacking in it due to the thick canopy layer blocking out the sky. As a result, forest floor conditions are dark and moist, which is the optimum condition for decomposition. Nutrient cycling is extremely vital in the rainforest, and because microbes drive nutrient cycling, they are key to sustaining this ecosystem. The huge biodiversity of bacteria and fungi in the rainforest is not due to nutrient rich soils. In fact, the rainforest's soils are quite nutrient poor. What powers the recycling in this ecosystem is the constant thick layer of leaf litter atop the forest floor. This is where the decomposition occurs, and is the home for a wide range of microorganisms like bacteria, fungi, and even protozoa in all different shapes and sizes.

Physical environment

Describe the physical and chemical characteristics of the environment, using as many sections/subsections as you require. Look at other topics available in MicrobeWiki. Which involve processes similar to yours? Create links where relevant.

Physical Characteristics

Chemical Characteristics

Subsection 2

Biological interactions

Are there important biological interactions that are important in this environment? Do these interactions influence microbial populations and their activities? How do these interactions influence other organisms? Describe biological interactions that might take place in this environment, using as many sections/subsections as you require. Look at other topics available in MicrobeWiki. Create links where relevant.

Nutrient Cycling

Decomposition

Subsection 1b

Subsection 2

Microbial processes

What microbial processes define this environment? Describe microbial processes that are important in this habitat, adding sections/subsections as needed. Look at other topics in MicrobeWiki. Are some of these processes already described? Create links where relevant.

Subsection 1

Subsection 1a

Subsection 1b

Subsection 2

Key Microorganisms

What kind of microbes do we typically find in this environment? Or associated with important processes in this environment? Describe key groups of microbes that we find in this environment, and any special adaptations they may have evolved to survive in this environment. Add sections/subsections as needed. Look at other microbe listings in MicrobeWiki. Are some of the groups of microbes from your environment already described? Create links to those pages. Specific microbial populations will be included in the next section.

Subsection 1

Subsection 1a

Subsection 1b

Subsection 2

Examples of organisms within the group

List examples of specific microbes that represent key groups or are associated with important processes found in this environment. Link to other MicrobeWiki pages where possible.

Current Research

Enter summaries of recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Angela Kent at the University of Illinois at Urbana-Champaign.