Methanosarcina barkeri: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 52: Line 52:
==Current Research==
==Current Research==


[http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2958.2006.05500.x Longstaff, DG and Blight, SK and Zhang, L and Green-Church, KB and Krzycki, JA. "In vivo contextual requirements for UAG translation as pyrrolysine". Molecular Microbiology. 2007. 63-1, p. 229-241.]<br /><br />
[http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2958.2006.05500.x Longstaff, DG and Blight, SK and Zhang, L and Green-Church, KB and Krzycki, JA. "In vivo contextual requirements for UAG translation as pyrrolysine". Molecular Microbiology. 2007. 63-1, p. 229-241.]<br />
"Pyrrolysine and selenocysteine have infiltrated natural genetic codes via the translation of canonical stop codons. UGA translation as selenocysteine is absolutely dependent on message context. Here we describe the first experimental examination of contextual requirements for UAG translation as pyrrolysine. A hexahistidine-tagged Methanosarcina barkeri mtmB1 gene, encoding monomethylamine methyltransferase MtmB1, was introduced into Methanosarcina acetivorans. Host mtmB expression was minimized by growth on methanol and recombinant mtmB1 products monitored by anti-MtmB and anti-hexahistidine immunoblotting. UAG translation was not compromised, as recombinant MtmB1 was 1% of cellular protein with only trace UAG-terminated mtmB1 product detectable. Untranslated regions flanking mtmB1 were not required for UAG translation, but loss of a downstream pyrrolysine insertion sequence (PYLIS) significantly increased the UAG-termination product of mtmB1 and decreased the UAG-translation product, which nonetheless contained pyrrolysine. An in-frame UAG within a bacterial uidA transcript was translated in the methanogen as pyrrolysine with 20% efficiency, suggesting UAG translation in the absence of evolved context. However, predominant UAG-directed termination with enhancement of UAG translation by the PYLIS appears analogous to cis-acting elements for UGA translation as selenocysteine, although different mechanisms may underlie these recoding events."<br /><br />
"Pyrrolysine and selenocysteine have infiltrated natural genetic codes via the translation of canonical stop codons. UGA translation as selenocysteine is absolutely dependent on message context. Here we describe the first experimental examination of contextual requirements for UAG translation as pyrrolysine. A hexahistidine-tagged Methanosarcina barkeri mtmB1 gene, encoding monomethylamine methyltransferase MtmB1, was introduced into Methanosarcina acetivorans. Host mtmB expression was minimized by growth on methanol and recombinant mtmB1 products monitored by anti-MtmB and anti-hexahistidine immunoblotting. UAG translation was not compromised, as recombinant MtmB1 was 1% of cellular protein with only trace UAG-terminated mtmB1 product detectable. Untranslated regions flanking mtmB1 were not required for UAG translation, but loss of a downstream pyrrolysine insertion sequence (PYLIS) significantly increased the UAG-termination product of mtmB1 and decreased the UAG-translation product, which nonetheless contained pyrrolysine. An in-frame UAG within a bacterial uidA transcript was translated in the methanogen as pyrrolysine with 20% efficiency, suggesting UAG translation in the absence of evolved context. However, predominant UAG-directed termination with enhancement of UAG translation by the PYLIS appears analogous to cis-acting elements for UGA translation as selenocysteine, although different mechanisms may underlie these recoding events."<br /><br />


[http://www.sciencemag.org/cgi/content/abstract/315/5814/1003 Sato, T, Atomi, H, and Imanaka, T. "Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism". Science. 2007. 315-5817, p. 1003.]<br /><br />
[http://www.sciencemag.org/cgi/content/abstract/315/5814/1003 Sato, T, Atomi, H, and Imanaka, T. "Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism". Science. 2007. 315-5817, p. 1003.]<br />
"The type III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) present in the archaeon Thermococcus kodakaraensis was found to participate in adenosine 5'-monophosphate (AMP) metabolism, a role that is distinct from that of classical RuBisCOs of the Calvin-Benson-Bassham cycle. Genes annotated as thymidine phosphorylase (deoA) and eucaryal translation initiation factor 2B (e2b2) were found to encode AMP phosphorylase and ribose-1,5-bisphosphate isomerase, respectively. These enzymes supplied the RuBisCO substrate, ribulose-1,5-bisphosphate, from AMP and phosphate. Archaea with type III RuBisCOs all harbor both DeoA and the corresponding E2b2 homologs. In this pathway, adenine was released from AMP and the phosphoribose moiety entered central-carbon metabolism."<br /><br />
"The type III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) present in the archaeon Thermococcus kodakaraensis was found to participate in adenosine 5'-monophosphate (AMP) metabolism, a role that is distinct from that of classical RuBisCOs of the Calvin-Benson-Bassham cycle. Genes annotated as thymidine phosphorylase (deoA) and eucaryal translation initiation factor 2B (e2b2) were found to encode AMP phosphorylase and ribose-1,5-bisphosphate isomerase, respectively. These enzymes supplied the RuBisCO substrate, ribulose-1,5-bisphosphate, from AMP and phosphate. Archaea with type III RuBisCOs all harbor both DeoA and the corresponding E2b2 homologs. In this pathway, adenine was released from AMP and the phosphoribose moiety entered central-carbon metabolism."<br /><br />


[http://doi.wiley.com/10.1002/prot.21262 Chu, HM and Andrew, HJW. "Enzyme-Substrate Interactions Revealed by the Crystal Structures of the Archaeal Sulfolobus PTP-Fold Phosphatase and its Phosphopeptide Complexes". PROTEINS: Structure, Function, and Bioinformatics. 2007. 66, p. 996-1003.]<br /><br />
[http://doi.wiley.com/10.1002/prot.21262 Chu, HM and Andrew, HJW. "Enzyme-Substrate Interactions Revealed by the Crystal Structures of the Archaeal Sulfolobus PTP-Fold Phosphatase and its Phosphopeptide Complexes". PROTEINS: Structure, Function, and Bioinformatics. 2007. 66, p. 996-1003.]<br />
"The P-loop-containing protein phos-phatases are important regulators in signal transduction. These enzymes have structural and functional similarity with a conserved sequence of Dx(25-41)HCxxGxxR(T/S) essential for catalysis. The singular protein tyrosine phosphatase (PTP) from archaeal Sulfolobus solfataricus is one of the smallest known PTPs with extreme thermostability. Here, we report the crystal structure of this phosphatase and its complexes with two tyrosyl phosphopeptides A-(p)Y-R and N-K-(p)Y-G-N. The structure suggests the minimal structural motif of the PTP family, having two variable sequences inserted between the 2-3 and 3-4 strands, respectively. The phosphate of both phosphopeptide substrates is bound to the P-loop through several hydrogen bonds. Comparison of several phosphatase-substrate complexes revealed that Gln135 on the Q-loop has different modes of recognition toward phosphopeptides. The substrate specificity of SsoPTP is primarily localized at the phosphotyrosine, suggesting that this phosphatase may be a prototypical PTP."<br /><br />
"The P-loop-containing protein phos-phatases are important regulators in signal transduction. These enzymes have structural and functional similarity with a conserved sequence of Dx(25-41)HCxxGxxR(T/S) essential for catalysis. The singular protein tyrosine phosphatase (PTP) from archaeal Sulfolobus solfataricus is one of the smallest known PTPs with extreme thermostability. Here, we report the crystal structure of this phosphatase and its complexes with two tyrosyl phosphopeptides A-(p)Y-R and N-K-(p)Y-G-N. The structure suggests the minimal structural motif of the PTP family, having two variable sequences inserted between the 2-3 and 3-4 strands, respectively. The phosphate of both phosphopeptide substrates is bound to the P-loop through several hydrogen bonds. Comparison of several phosphatase-substrate complexes revealed that Gln135 on the Q-loop has different modes of recognition toward phosphopeptides. The substrate specificity of SsoPTP is primarily localized at the phosphotyrosine, suggesting that this phosphatase may be a prototypical PTP."<br /><br />


[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17360621&dopt=Citation Ambrogelly, A, Gundllapalli, S, Herring, S, Polycarpo, C, Frauer, C, and Soll, D. "Pyrrolysine is not hardwired for cotranslational insertion at UAG codons". Proceeds of the National Academy of Sciences. 2007. 104-9, p. 3141-3146.]<br /><br />
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17360621&dopt=Citation Ambrogelly, A, Gundllapalli, S, Herring, S, Polycarpo, C, Frauer, C, and Soll, D. "Pyrrolysine is not hardwired for cotranslational insertion at UAG codons". Proceeds of the National Academy of Sciences. 2007. 104-9, p. 3141-3146.]<br />
"Pyrrolysine (Pyl), the 22nd naturally encoded amino acid, gets acylated to its distinctive UAG suppressor tRNA(Pyl) by the cognate pyrrolysyl-tRNA synthetase (PylRS). Here we determine the RNA elements required for recognition and aminoacylation of tRNA(Pyl) in vivo by using the Pyl analog N-epsilon-cyclopentyloxycarbonyl-l-lysine. Forty-two Methanosarcina barkeri tRNA(Pyl) variants were tested in Escherichia coli for suppression of the lac amber A24 mutation; then relevant tRNA(Pyl) mutants were selected to determine in vivo binding to M. barkeri PylRS in a yeast three-hybrid system and to measure in vitro tRNA(Pyl) aminoacylation. tRNA(Pyl) identity elements include the discriminator base, the first base pair of the acceptor stem, the T-stem base pair G51:C63, and the anticodon flanking nucleotides U33 and A37. Transplantation of the tRNA(Pyl) identity elements into the mitochondrial bovine tRNA(Ser) scaffold yielded chimeric tRNAs active both in vitro and in vivo. Because the anticodon is not important for PylRS recognition, a tRNA(Pyl) variant could be constructed that efficiently suppressed the lac opal U4 mutation in E. coli. These data suggest that tRNA(Pyl) variants may decode numerous codons and that tRNA(Pyl):PylRS is a fine orthogonal tRNA:synthetase pair that facilitated the late addition of Pyl to the genetic code."
"Pyrrolysine (Pyl), the 22nd naturally encoded amino acid, gets acylated to its distinctive UAG suppressor tRNA(Pyl) by the cognate pyrrolysyl-tRNA synthetase (PylRS). Here we determine the RNA elements required for recognition and aminoacylation of tRNA(Pyl) in vivo by using the Pyl analog N-epsilon-cyclopentyloxycarbonyl-l-lysine. Forty-two Methanosarcina barkeri tRNA(Pyl) variants were tested in Escherichia coli for suppression of the lac amber A24 mutation; then relevant tRNA(Pyl) mutants were selected to determine in vivo binding to M. barkeri PylRS in a yeast three-hybrid system and to measure in vitro tRNA(Pyl) aminoacylation. tRNA(Pyl) identity elements include the discriminator base, the first base pair of the acceptor stem, the T-stem base pair G51:C63, and the anticodon flanking nucleotides U33 and A37. Transplantation of the tRNA(Pyl) identity elements into the mitochondrial bovine tRNA(Ser) scaffold yielded chimeric tRNAs active both in vitro and in vivo. Because the anticodon is not important for PylRS recognition, a tRNA(Pyl) variant could be constructed that efficiently suppressed the lac opal U4 mutation in E. coli. These data suggest that tRNA(Pyl) variants may decode numerous codons and that tRNA(Pyl):PylRS is a fine orthogonal tRNA:synthetase pair that facilitated the late addition of Pyl to the genetic code."



Revision as of 17:23, 3 May 2007

A Microbial Biorealm page on the genus Methanosarcina barkeri

Methanosarcina barkeri. Used with permission from Dr. Huub Op den Camp of Radboud University Nijmegen, the Netherlands.

Classification

Higher order taxa

NCBI: Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanosarcina

Species

NCBI: Methanosarcina barkeri

Strains

NCBI: Methanosarcina barkeri str. Fusaro

Methanosarcina barkeri str. MS
Methanosarcina barkeri str. W
Methanosarcina barkeri str. 227

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

Methanosarcina barkeri is an archaea and therefore causes no known diseases.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Longstaff, DG and Blight, SK and Zhang, L and Green-Church, KB and Krzycki, JA. "In vivo contextual requirements for UAG translation as pyrrolysine". Molecular Microbiology. 2007. 63-1, p. 229-241.
"Pyrrolysine and selenocysteine have infiltrated natural genetic codes via the translation of canonical stop codons. UGA translation as selenocysteine is absolutely dependent on message context. Here we describe the first experimental examination of contextual requirements for UAG translation as pyrrolysine. A hexahistidine-tagged Methanosarcina barkeri mtmB1 gene, encoding monomethylamine methyltransferase MtmB1, was introduced into Methanosarcina acetivorans. Host mtmB expression was minimized by growth on methanol and recombinant mtmB1 products monitored by anti-MtmB and anti-hexahistidine immunoblotting. UAG translation was not compromised, as recombinant MtmB1 was 1% of cellular protein with only trace UAG-terminated mtmB1 product detectable. Untranslated regions flanking mtmB1 were not required for UAG translation, but loss of a downstream pyrrolysine insertion sequence (PYLIS) significantly increased the UAG-termination product of mtmB1 and decreased the UAG-translation product, which nonetheless contained pyrrolysine. An in-frame UAG within a bacterial uidA transcript was translated in the methanogen as pyrrolysine with 20% efficiency, suggesting UAG translation in the absence of evolved context. However, predominant UAG-directed termination with enhancement of UAG translation by the PYLIS appears analogous to cis-acting elements for UGA translation as selenocysteine, although different mechanisms may underlie these recoding events."

Sato, T, Atomi, H, and Imanaka, T. "Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism". Science. 2007. 315-5817, p. 1003.
"The type III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) present in the archaeon Thermococcus kodakaraensis was found to participate in adenosine 5'-monophosphate (AMP) metabolism, a role that is distinct from that of classical RuBisCOs of the Calvin-Benson-Bassham cycle. Genes annotated as thymidine phosphorylase (deoA) and eucaryal translation initiation factor 2B (e2b2) were found to encode AMP phosphorylase and ribose-1,5-bisphosphate isomerase, respectively. These enzymes supplied the RuBisCO substrate, ribulose-1,5-bisphosphate, from AMP and phosphate. Archaea with type III RuBisCOs all harbor both DeoA and the corresponding E2b2 homologs. In this pathway, adenine was released from AMP and the phosphoribose moiety entered central-carbon metabolism."

Chu, HM and Andrew, HJW. "Enzyme-Substrate Interactions Revealed by the Crystal Structures of the Archaeal Sulfolobus PTP-Fold Phosphatase and its Phosphopeptide Complexes". PROTEINS: Structure, Function, and Bioinformatics. 2007. 66, p. 996-1003.
"The P-loop-containing protein phos-phatases are important regulators in signal transduction. These enzymes have structural and functional similarity with a conserved sequence of Dx(25-41)HCxxGxxR(T/S) essential for catalysis. The singular protein tyrosine phosphatase (PTP) from archaeal Sulfolobus solfataricus is one of the smallest known PTPs with extreme thermostability. Here, we report the crystal structure of this phosphatase and its complexes with two tyrosyl phosphopeptides A-(p)Y-R and N-K-(p)Y-G-N. The structure suggests the minimal structural motif of the PTP family, having two variable sequences inserted between the 2-3 and 3-4 strands, respectively. The phosphate of both phosphopeptide substrates is bound to the P-loop through several hydrogen bonds. Comparison of several phosphatase-substrate complexes revealed that Gln135 on the Q-loop has different modes of recognition toward phosphopeptides. The substrate specificity of SsoPTP is primarily localized at the phosphotyrosine, suggesting that this phosphatase may be a prototypical PTP."

Ambrogelly, A, Gundllapalli, S, Herring, S, Polycarpo, C, Frauer, C, and Soll, D. "Pyrrolysine is not hardwired for cotranslational insertion at UAG codons". Proceeds of the National Academy of Sciences. 2007. 104-9, p. 3141-3146.
"Pyrrolysine (Pyl), the 22nd naturally encoded amino acid, gets acylated to its distinctive UAG suppressor tRNA(Pyl) by the cognate pyrrolysyl-tRNA synthetase (PylRS). Here we determine the RNA elements required for recognition and aminoacylation of tRNA(Pyl) in vivo by using the Pyl analog N-epsilon-cyclopentyloxycarbonyl-l-lysine. Forty-two Methanosarcina barkeri tRNA(Pyl) variants were tested in Escherichia coli for suppression of the lac amber A24 mutation; then relevant tRNA(Pyl) mutants were selected to determine in vivo binding to M. barkeri PylRS in a yeast three-hybrid system and to measure in vitro tRNA(Pyl) aminoacylation. tRNA(Pyl) identity elements include the discriminator base, the first base pair of the acceptor stem, the T-stem base pair G51:C63, and the anticodon flanking nucleotides U33 and A37. Transplantation of the tRNA(Pyl) identity elements into the mitochondrial bovine tRNA(Ser) scaffold yielded chimeric tRNAs active both in vitro and in vivo. Because the anticodon is not important for PylRS recognition, a tRNA(Pyl) variant could be constructed that efficiently suppressed the lac opal U4 mutation in E. coli. These data suggest that tRNA(Pyl) variants may decode numerous codons and that tRNA(Pyl):PylRS is a fine orthogonal tRNA:synthetase pair that facilitated the late addition of Pyl to the genetic code."

References

Balch, WE, Fox, GE, Magrum, LJ, Woese, CR, and Wolfe, RS. "Methanogens: Reevaluation of a Unique Biological Group". Microbiological Reviews. June 1979. p. 260-296.
Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR. "The Methanosarcina barkeri Genome: Comparative Analysis with ...". Journal of Bacteriology. 2006. 188-22, p. 7922-7931.
Stadtman, TC and Barker, HA. "STUDIES ON THE METHANE FERMENTATION IX. The Origin of Methane in the Acetate and Methanol Fermentations by Methanosarcina". Journal of Bacteriology. 1951. 61-1, p. 81-86.
"Cutting cattle's methane emissions". USA Today (Magazine). June 01, 2002.
Atkins, JF and Gesteland, R. "The 22nd Amino Acid". Science. 2002. 296-5572, p. 1409-1410.


Edited by Ian Kerman, a student of Rachel Larsen at UCSD.