Viral Oncology: Difference between revisions
No edit summary |
|||
Line 3: | Line 3: | ||
[[Image:Herpes.diagram.jpg|thumb|300px|right|Electron micrograph of the Ebola Zaire virus. This was one of the first micrographs taken of the virus, in 1976. By Dr. Frederick Murphy, now at U.C. Davis, then at the [http://wwwnc.cdc.gov/eid/article/21/11/pdfs/et-2111.pdf CDC].]] | [[Image:Herpes.diagram.jpg|thumb|300px|right|Electron micrograph of the Ebola Zaire virus. This was one of the first micrographs taken of the virus, in 1976. By Dr. Frederick Murphy, now at U.C. Davis, then at the [http://wwwnc.cdc.gov/eid/article/21/11/pdfs/et-2111.pdf CDC].]] | ||
<br>By Erick Ditmars <br> | <br>By Erick Ditmars <br> | ||
<br>Viral | <br>Viral oncology is a subsection of Oncology that focuses on treating tumors with viruses and is the most recent and arguably most promising new age tool we have for treating cancer. While this field has gotten a lot of press in recent years the idea of using viruses as oncolytic agents has been around since the early 1920’s, since as early as the mid-1800’s doctors noticed that certain illnesses would cause remission in cancer patients. These patients usually had blood based cancers such as leukemia or lymphoma with significant immune suppression. The most famous report of this type was made by Dock1 in which a 47 year old woman with “Myelogenous leukemia” went into remission after a flu infection. This report was first made in 1896, a whole 37 years before influenza was proven to be caused by a virus. Another more shocking case is that of a 4 year old boy with lymphatic leukemia who contracted chickenpox. His liver and spleen and lymph nodes were all severely swollen and his leukocyte count was greatly elevated (200 cells/ul) after contracting chicken pox his liver, spleen returned to normal size and his white count fell back into normal levels (4.1 cells/ul). However, in both cases the remission was short lived and the cancer soon returned. | ||
The first attempt to use viruses in oncology was the treatment of Hodgkin’s lymphoma with hepatitis in the 1950’s. While some did achieve remission for a short time many in the study also contracted Hepatitis B. The study was discontinued. A number of similar experiments were run throughout the 50’s and 60’s with minimal success and viral oncology was largely abandoned. | |||
It was almost 50 years later when a breakthrough in viral oncology came in the form of oncolytic adenovirus H101. This virus was approved by the FDA for cancer treatments in 2005 and works by targeting p53 deficient cells (most cancers are p53 deficient). Today there are many different viral pathways that medical research is focusing on in an attempt to make viruses an essential part of the cancer fighting toolbox. | |||
<br>At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of: | <br>At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of: | ||
<br><b>Double brackets:</b> [[ | <br><b>Double brackets:</b> [[ |
Revision as of 23:17, 16 November 2015
Introduction
By Erick Ditmars
Viral oncology is a subsection of Oncology that focuses on treating tumors with viruses and is the most recent and arguably most promising new age tool we have for treating cancer. While this field has gotten a lot of press in recent years the idea of using viruses as oncolytic agents has been around since the early 1920’s, since as early as the mid-1800’s doctors noticed that certain illnesses would cause remission in cancer patients. These patients usually had blood based cancers such as leukemia or lymphoma with significant immune suppression. The most famous report of this type was made by Dock1 in which a 47 year old woman with “Myelogenous leukemia” went into remission after a flu infection. This report was first made in 1896, a whole 37 years before influenza was proven to be caused by a virus. Another more shocking case is that of a 4 year old boy with lymphatic leukemia who contracted chickenpox. His liver and spleen and lymph nodes were all severely swollen and his leukocyte count was greatly elevated (200 cells/ul) after contracting chicken pox his liver, spleen returned to normal size and his white count fell back into normal levels (4.1 cells/ul). However, in both cases the remission was short lived and the cancer soon returned.
The first attempt to use viruses in oncology was the treatment of Hodgkin’s lymphoma with hepatitis in the 1950’s. While some did achieve remission for a short time many in the study also contracted Hepatitis B. The study was discontinued. A number of similar experiments were run throughout the 50’s and 60’s with minimal success and viral oncology was largely abandoned.
It was almost 50 years later when a breakthrough in viral oncology came in the form of oncolytic adenovirus H101. This virus was approved by the FDA for cancer treatments in 2005 and works by targeting p53 deficient cells (most cancers are p53 deficient). Today there are many different viral pathways that medical research is focusing on in an attempt to make viruses an essential part of the cancer fighting toolbox.
At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of:
Double brackets: [[
Filename: Ebola_virus2.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.
Closed double brackets: ]]
Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+
Introduce the topic of your paper. State your health service question, and explain the biomedical issues.
Section 1
Include some current research, with at least one figure showing data.
Section 2
Include some current research, with at least one figure showing data.
Section 3
Include some current research, with at least one figure showing data.
Conclusion
References
Authored for BIOL 291.00 Health Service and Biomedical Analysis, taught by Joan Slonczewski, 2016, Kenyon College.