Mycobacterium bovis: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Biorealm Genus}} | {{Biorealm Genus}} | ||
==Classification== | ==Classification== | ||
Revision as of 04:00, 3 June 2007
A Microbial Biorealm page on the genus Mycobacterium bovis
Classification
Higher order taxa
Higher Order Taxa: Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales; Corynebacterineae; Mycobacteriaceae; Mycobacterium; Mycobacterium tuberculosis complex (1)
Genus
Mycobacterium bovis
NCBI: Taxonomy |
Description and significance
“Mycobacterium bovis is the causative agent of tuberculosis in a range of animal species and man, with world wide annual losses to agriculture of $3 billion.”(2) M. bovis is the agent responsible for bovine tuberculosis, however it can also cause the disease in humans if there is consumption of infected materials.(1) Pasteurization of milk has been a major preventative factor in stopping transmission of bovine tuberculosis in humans; however in many underdeveloped countries, where pasteurization is not practiced, there is still a concern with infection by M. bovis.(1) M. bovis AF2122/97 is a fully virulent strain that was isolated from a diseased cow in 1997.(2)
Genome structure
M. bovis genome sequence is 4,345,492 base pairs in length, arranged in a single circular chromosomes.(2) The genome contains 3,952 genes encoding proteins.(2) The genome is >99.52% identical at the nucleotide level to Mycobacterium tuberculosis.(2) Comparative sequencing with M. tuberculosis revealed 11 deletions from the genome of M. bovis, ranging in size from 1-12.7 kb, and have been confirmed by the genome sequence data.(2) M. bovis contains one unique locus termed TbD1, which is absent from the M. tuberculosis strain; therefore, it would seem that deletion has been the mechanism in shaping the M. bovis genome.(2)
Cell structure and metabolism
M. bovis is similar in structure and metabolism to M. tuberculosis. M. bovis is a Gram-positive, acid-fast, rod-shaped, aerobic bacteria.(1) Unlike M. tuberculosis, M. bovis lacks pyruvate kinase activity, due to pykA containing a point mutation that affects binding of Mg2+ cofactor.(2) Pyruvate kinase catalyses the final step of glycolysis, the dephosphorylation of phosphorenolpyruvate to pyruvate.(2) Therefore in M. bovis glycolytic intermediates are unable to enter into oxidative metabolism.(2) Although no specific studies have been performed, it seems that M. bovis must rely on amino acids or fatty acids as an alternative carbon source for energy metabolism.(2)
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
example:
Edited by Steven Lada, student of Rachel Larsen and Kit Pogliano