Oophila amblystomatis: Difference between revisions
(→Author) |
|||
Line 31: | Line 31: | ||
==Author== | ==Author== | ||
Page authored by | Page authored by Avery Quinlan, Max Zaret, & Jessica Zellinger students of Prof. Jay Lennon at IndianaUniversity. | ||
<!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]] | <!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]] |
Revision as of 20:22, 18 April 2018
Classification
Domain: Eukaryota, Kingdom: Plantae, Division: Chlorophyta, Class: Chlorophyceae, Order: Chlorococcales, Family: Chlorococcaceae, Genus: Oophila, Species: O. amblystomatis
Description and Significance
Describe the appearance, habitat, etc. of the organism, and why you think it is important.
Genome Structure
Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?
Cell Structure, Metabolism and Life Cycle
Interesting features of cell structure; how it gains energy; what important molecules it produces.
Ecology
Oophila amblystomatis is a single-celled green algae that can only be found inside of the spotted salamander (Ambystoma maculatum) eggs. It is not present anywhere else in nature. The algae grows alongside the salamander within the enclosed egg and provides the green color that is present. The algae more specifically, in the presence of light, uses the process of photosynthesis and provides higher oxygen concentrations to the egg. However, in the absence of light, the oxygen levels are extremely low within the egg. The spotted salamander egg provides nitrogenous waste CO2 to the algae, and the algae in return provides the salamander organic carbon and oxygen. This creates the mutualistic relationship between the two.
References
Bachmann, Marilyn D., Burkholder, JoAnn M., Carlton, Richard G., & Wetzel, Robert G.(1986).Symbiosis between salamander eggs and green algae: microelectrode measurements inside eggs demonstrate effect of photosynthesis on oxygen concentration. Canadian Journal of Zoology, 64(7): 1586-1588.
Hutchison, V. H., & Hammen, C. S. (1958). Oxygen utilization in the symbiosis of embryos of the salamander, Ambystoma maculatum and the alga, Oophila amblystomatis. The Biological Bulletin, 115(3), 483-489
Author
Page authored by Avery Quinlan, Max Zaret, & Jessica Zellinger students of Prof. Jay Lennon at IndianaUniversity.