Akkermansia muciniphila: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 32: Line 32:
Interesting features of cell structure; how it gains energy; what important molecules it produces.
Interesting features of cell structure; how it gains energy; what important molecules it produces.


''Akkermansia muciniphila'' is able to use mucin as its sole source of carbon, nitrogen, and energy. It is an obligate chemo-organotroph, as found in a study that found no growth on a basal medium supplemented with vitamins and purged with H<sub>2/CO<sub>2<sub>. It was found that only a mucin medium was needed to culture ''A. muciniphila'', as indicated in research that hypothesized that it survived solely on the mucin in the host intestine. ''Akkermansia muciniphila'' was found to produce acetate, propionate, and ethanol from mucin fermentation [].
''Akkermansia muciniphila'' is able to use mucin as its sole source of carbon, nitrogen, and energy. It is an obligate chemo-organotroph, as found in a study that found no growth on a basal medium supplemented with vitamins and purged with H<sub>2<sub>/CO<sub>2<sub>. It was found that only a mucin medium was needed to culture ''A. muciniphila'', as indicated in research that hypothesized that it survived solely on the mucin in the host intestine. ''Akkermansia muciniphila'' was found to produce acetate, propionate, and ethanol from mucin fermentation [].
[[File:akkermansia.jpg|200px|thumb|left|Image of ''Akkermansia muciniphila Function'']]
[[File:akkermansia.jpg|200px|thumb|left|Image of ''Akkermansia muciniphila Function'']]



Revision as of 01:15, 29 April 2020

This student page has not been curated.

Classification

Domain: Bacteria

Phylum: Verrucomicrobia

Class: Verrucomicrobiae

Order: Verrucomicrobiales

Family: Akkermansiaceae


Species

Akkermansia muciniphila

Description and Significance

Akkermansia muciniphila is an anaerobic, Gram-negative, non-motile, non-spore-forming, oval-shaped bacterium.[] It is present in the human intestinal tract in high quantities, ranging from 39% to 84% of the total bacterial population. A.muciniphila is associated with the protective mucus lining of the intestines. Its presence in the mucus layer of the intestinal tract is particularly important because A.muciniphila is able to degrade host mucin into short chain fatty acids, or other products, to regulate the biological functions of the host.[] The high content of Akkermansia muciniphila is thought to play a major role in the health of the intestinal mucos, as well as regulate host immune responses and lipid metabolism. [] Many studies have noticed that a decrease of Akkermansia muciniphila in the mucus is tied with higher rates of obesity, increased inflammation, and an increase in Type 2 diabetes symptoms. []

Image of Akkermansia muciniphila

Genome Structure

The complete genome of Akkermansia muciniphila has one circular chromosome of 2,664,102 bp with a G+C content of 55.8%.Akkermansia muciniphila has a total of 2,176 protein coding sequences and an overall coding capacity of 88.8%.[] Once sequenced, the genome was found to contain many candidate mucinase-encoding genes, but did not seem to have any genes for encoding canonical mucus-binding domains.[] Akkermansia muciniphila's genome did contain numerous phage-associated sequences, which indicates that viruses may have played a role in the evolution of the species.

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.

Akkermansia muciniphila is able to use mucin as its sole source of carbon, nitrogen, and energy. It is an obligate chemo-organotroph, as found in a study that found no growth on a basal medium supplemented with vitamins and purged with H2/CO2. It was found that only a mucin medium was needed to culture A. muciniphila, as indicated in research that hypothesized that it survived solely on the mucin in the host intestine. Akkermansia muciniphila was found to produce acetate, propionate, and ethanol from mucin fermentation [].

Image of Akkermansia muciniphila Function

Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

References

[] Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A, Hadifar S, Yaghoubfar R, Ahmadi Badi S, Khatami S, Vaziri F and Siadat SD (2019) Akkermansia muciniphila-Derived Extracellular Vesicles as a Mucosal Delivery Vector for Amelioration of Obesity in Mice. Front. Microbiol. 10:2155. doi: 10.3389/fmicb.2019.02155

[] Bian, Xiaoyuan et al. “Administration of Akkermansia muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice.” Frontiers in microbiology vol. 10 2259. 1 Oct. 2019, doi:10.3389/fmicb.2019.02259

[] Cani PD, de Vos WM. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front Microbiol. 2017;8:1765. Published 2017 Sep 22. doi:10.3389/fmicb.2017.01765

[] Caputo, Aurélia et al. “Whole-genome assembly of Akkermansia muciniphila sequenced directly from human stool.” Biology direct vol. 10 5. 19 Feb. 2015, doi:10.1186/s13062-015-0041-1

[] Derrien M., Van Baarlen P., Hooiveld G., Norin E., Muller M., De Vos W. M. (2011). Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol. 2:166. 10.3389/fmicb.2011.00166

[] Derrien, Muriel, et al. “Akkermansia Muciniphila and Its Role in Regulating Host Functions.” Microbial Pathogenesis, vol. 106, 2017, pp. 171–181., doi:10.1016/j.micpath.2016.02.005.

[] Derrien, Muriel, et al. “Akkermansia Muciniphila Gen. Nov., Sp. Nov., a Human Intestinal Mucin-Degrading Bacterium.” International Journal Of Systematic And Evolutionary Microbiology, vol. 54, no. 5, Jan. 2004, pp. 1469–1476., doi:10.1099/ijs.0.02873-0.

[] Guo, Xianfeng et al. “Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas.” BMC genomics vol. 18,1 800. 18 Oct. 2017, doi:10.1186/s12864-017-4195-3

[] van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, et al. (2011) The Genome of Akkermansia muciniphila, a Dedicated Intestinal Mucin Degrader, and Its Use in Exploring Intestinal Metagenomes. PLoS ONE 6(3): e16876. https://doi.org/10.1371/journal.pone.0016876

[] Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol. 2020;11:219. Published 2020 Feb 21. doi:10.3389/fmicb.2020.00219

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Author

Page authored by Emma Schuster, student of Prof. Jay Lennon at IndianaUniversity.