Prochlorococcus and Climate Change: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
Line 29: Line 29:
<b>How does climate change influence the number and efficacy of <i>Prochlorococcus</i> microbes throughout the planet's oceans?</b><br>
<b>How does climate change influence the number and efficacy of <i>Prochlorococcus</i> microbes throughout the planet's oceans?</b><br>
<br>
<br>
Include some current research, with at least one figure showing data.<br>
Anthropogenic change is affecting the planet in many ways, most of them unanticipated by scientists. With the projection of continued global change, modeling the future changes set to affect various ecosystems is essential. Since <i>Prochlorococcus</i> is one of the most abundant sinks of atmospheric carbon dioxide, modeling the effects of planetary changes can potentially predict greater, unanticipated changes caused by <i>Prochlorococcus</i>. A decrease in <i>Prochlorococcus</i> and other autotrophic microbes could result in a larger than expected build up of greenhouse gasses as a result of  these photosynthetic organisms’ carbon sequestration potential. Greenhouse gas build up, the main cause of global warming, is an essential factor in ecological dynamics across the planet. While <i>Prochlorococcus</i> has evolved for photosynthesis in environments with various different light availability and depths, the rate of anthropogenic change far outpaces <i>Prochlorococcus</i>’ evolution. Various human changes are projected to both increase and decrease the productivity of <i>Prochlorococcus</i> in the Atlantic Ocean.
<br>
<br>
Every point of information REQUIRES CITATION using the citation tool shown above.
Every point of information REQUIRES CITATION using the citation tool shown above.

Revision as of 18:26, 15 April 2023

This image depicts a Transmission Electron Microscopy image of Prochlorococcus marinus with green coloring. The photo credit for this image belongs to Luke Thompson from Chisholm Lab and Nikki Watson from Whitehead, MIT (2007).


By Zachary Aronson-Paxton

At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki.

The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC. Every image requires a link to the source.
Closed double brackets: ]]

Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+



Sample citations: [1] [2]

A citation code consists of a hyperlinked reference within "ref" begin and end codes.
To repeat the citation for other statements, the reference needs to have a names: "<ref name=aa>"
The repeated citation works like this, with a forward slash.[1]

What are Prochlorococcus?

Prochlorococcus is a gram negative, coccus bacteria species in the genus cyanobacteria. Prochlorococcus is an aquatic autotroph, found throughout the planet's oceans (Biller et al. 2015). Earth’s oxygen-rich atmosphere is the result of Cyanobacteria and their mass amounts of photosynthesis. Specifically, Prochlorococcus is one of the most abundant autotrophic bacteria in the planet’s oceans (Biller et al. 2015). Prochlorococcus can number up to 70,000 cells in a milliliter of ocean water (Campbell et al. 1998). These vast quantities produce a significant percentage of Earth’s entire photosynthetic output and up to 79 percent of the North Atlantic Ocean’s entire primary production (Biller et al. 2015) (Li 1994). As a result of their large photosynthetic potential, they are a key organism in the fight against climate change and the sequestration of atmospheric carbon. Prochlorococcus uptake more carbon dioxide to undergo photosynthesis than they use up in respiration, creating a stock of carbon inside each organism (Li 1994). When Prochlorococcus dies, it sinks to the bottom of the ocean and is buried, eventually forming oil in what is known as the ocean biological pump (Resplandy et al. 2019). In this way, Prochlorococcus serve as a sink for atmospheric carbon and have an impact on climate change.

The Effect of Climate Change on Prochlorococcus

How does climate change influence the number and efficacy of Prochlorococcus microbes throughout the planet's oceans?

Anthropogenic change is affecting the planet in many ways, most of them unanticipated by scientists. With the projection of continued global change, modeling the future changes set to affect various ecosystems is essential. Since Prochlorococcus is one of the most abundant sinks of atmospheric carbon dioxide, modeling the effects of planetary changes can potentially predict greater, unanticipated changes caused by Prochlorococcus. A decrease in Prochlorococcus and other autotrophic microbes could result in a larger than expected build up of greenhouse gasses as a result of these photosynthetic organisms’ carbon sequestration potential. Greenhouse gas build up, the main cause of global warming, is an essential factor in ecological dynamics across the planet. While Prochlorococcus has evolved for photosynthesis in environments with various different light availability and depths, the rate of anthropogenic change far outpaces Prochlorococcus’ evolution. Various human changes are projected to both increase and decrease the productivity of Prochlorococcus in the Atlantic Ocean.
Every point of information REQUIRES CITATION using the citation tool shown above.

Prochlororcoccus’ Impact on the Oceans

How does Prochlorococcus’ large scale photosynthetic processes affect ocean ecosystems?

Include some current research, with at least one figure showing data.

Prochlororcoccus’ Effect on the Changing Planet

Does Prochlorococcus have a direct impact on the planet’s atmosphere and the process of climate change?

Include some current research, with at least one figure showing data.

Conclusion

References



Authored for BIOL 238 Microbiology, taught by Joan Slonczewski, 2023, Kenyon College