Propionibacterium ruminifibrarum: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 36: Line 36:


==Cell Structure, Metabolism and Life Cycle==
==Cell Structure, Metabolism and Life Cycle==
 
P. ruminifibrarum can convert D-adonitol, galactose, glucose, inositol, DL-lactate, mannose, meso-erythritol, ribose, and sorbitol, to propionate and acetate, and succinate and/or formate. This strain, JV5T, could not directly degrade plant carbon sources, but could use the compounds made by the primary degraders.
 
 
   


==Ecology and Pathogenesis==
==Ecology and Pathogenesis==

Revision as of 04:30, 14 October 2023

This student page has not been curated.
Legend. Image credit: Name or Publication.


Classification

Bacteria; Actinomycetota; Actinomycetes; Propionibacteriales; Propionibacteriaceae


Species

NCBI: [1]


Propionibacterium ruminifibrarum


Description and Significance

P. ruminifibrarum is rod-shaped and found in the skin of animals and humans. P. ruminifibrarum is specifically found in the rumen of a Holstein Friesian dairy cow. P. ruminifibrarum is important because it is a novel species found within Propionibacterium, that metabolizes differently than other Propionibacterium species.

Genome Structure

The DNA G+C content of the type strain is 68.9 mol%. Cells are present in single cells and in clusters. Against P. australiense, the average genome wide nucleotide identity was 88.3% and 35.5% digital DNA-DNA hybridization.

Cell Structure, Metabolism and Life Cycle

P. ruminifibrarum can convert D-adonitol, galactose, glucose, inositol, DL-lactate, mannose, meso-erythritol, ribose, and sorbitol, to propionate and acetate, and succinate and/or formate. This strain, JV5T, could not directly degrade plant carbon sources, but could use the compounds made by the primary degraders.

Ecology and Pathogenesis

References

[


Author

Page authored by Joanna Rose Bologna, student of Prof. Bradley Tolar at UNC Wilmington.