Acidilobus saccharovorans: Difference between revisions
Line 42: | Line 42: | ||
==Cell Structure, Metabolism and Life Cycle== | ==Cell Structure, Metabolism and Life Cycle== | ||
<i>Acidilobus saccharovorans</i> is an anaerobic, organotrophic, thermoacidophilic archaeon. Glucose in <i>A. saccharovorans</i> is metabolized to pyruvate through the Embden-Meyerhof pathway or the Enter-Doudiroff pathway. <i>A. saccharovorans</i> may conserve energy by doing oxidative phosphorylation. | <i>Acidilobus saccharovorans</i> is an anaerobic, organotrophic, thermoacidophilic archaeon. Glucose in <i>A. saccharovorans</i> is metabolized to pyruvate through the Embden-Meyerhof pathway or the Enter-Doudiroff pathway. <i>A. saccharovorans</i> may conserve energy by doing oxidative phosphorylation. |
Revision as of 19:41, 6 December 2023
Classification
Thermoproteota; Thermoprotei; Acidilobales; Acidilobaceae
Species
NCBI: [1] |
Acidilobus saccharovorans
Description and Significance
A. saccharovorans has a coccus shape with a bundle of flagella. This archaea also has a thick S-layer. A. saccharovorans was isolated from a terrestrial hot spring.
Genome Structure
A. saccharovorans consists of a circular genome with 1,496,453 base pairs. A. saccharovorans have no extrachromosomal elements and have one copy of the 16S-23S rRNA operon. There are 246 genes that are unique for A. saccharovorans.
Cell Structure, Metabolism and Life Cycle
Acidilobus saccharovorans is an anaerobic, organotrophic, thermoacidophilic archaeon. Glucose in A. saccharovorans is metabolized to pyruvate through the Embden-Meyerhof pathway or the Enter-Doudiroff pathway. A. saccharovorans may conserve energy by doing oxidative phosphorylation.
Ecology and Pathogenesis
Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
A. saccharovorans are found on hot springs. They are believed to help with the complex oxidation of organic material.
References
Author
Page authored by Leah Rotte, student of Prof. Bradley Tolar at UNC Wilmington.