Evolution of Wolves: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Introduction== | ==Introduction== | ||
Wolves (Canis lupus) are iconic apex predators with a fascinating evolutionary history that spans millions of years. Modern wolves belong to the Canidae family, a diverse group of carnivorous mammals that includes domestic dogs (Canis lupus familiaris), coyotes (Canis latrans), and jackals (Canis aureus). These remarkable animals are celebrated for their adaptability, intelligence, and social behavior, which have enabled them to thrive in a variety of habitats across the globe. The evolutionary journey of wolves provides valuable insights into their survival strategies, ecological roles, and complex relationships with humans. Their lineage uncovers a story of resilience and transformation, from ancient ancestors to the apex predators we know today.The lineage of wolves traces back to the Miacids, small carnivorous mammals from the late Paleocene and Eocene epochs (approximately 62–33 million years ago). Miacids are considered the ancestors of all modern carnivores, including canids. By the late Miocene (about 10 million years ago), the family Canidae had split into three subfamilies: Hesperocyoninae, Borophaginae, and Caninae, with Caninae being the direct ancestors of modern wolves. The genus | Wolves (Canis lupus) are iconic apex predators with a fascinating evolutionary history that spans millions of years. Modern wolves belong to the Canidae family, a diverse group of carnivorous mammals that includes domestic dogs (Canis lupus familiaris), coyotes (Canis latrans), and jackals (Canis aureus). These remarkable animals are celebrated for their adaptability, intelligence, and social behavior, which have enabled them to thrive in a variety of habitats across the globe. The evolutionary journey of wolves provides valuable insights into their survival strategies, ecological roles, and complex relationships with humans. Their lineage uncovers a story of resilience and transformation, from ancient ancestors to the apex predators we know today.The lineage of wolves traces back to the Miacids, small carnivorous mammals from the late Paleocene and Eocene epochs (approximately 62–33 million years ago). Miacids are considered the ancestors of all modern carnivores, including canids. By the late Miocene (about 10 million years ago), the family Canidae had split into three subfamilies: Hesperocyoninae, Borophaginae, and Caninae, with Caninae being the direct ancestors of modern wolves. The genus Canis emerged around 2–3 million years ago, marking a significant milestone in wolf evolution. Early species such as Canis lepophagus and Canis edwardii exhibited transitional features between earlier canids and the robust forms of modern wolves. One notable relative, Canis dirus (the dire wolf), coexisted with Canis lupus during the Pleistocene epoch. Dire wolves were specialized predators of large Ice Age megafauna, a diet that ultimately contributed to their extinction as their prey disappeared.<br><br> | ||
Compose a title for your page.<br> Type your exact title in the Search window, then press Go. The MicrobeWiki will invite you to create a new page with this title.<br><br> | Compose a title for your page.<br> Type your exact title in the Search window, then press Go. The MicrobeWiki will invite you to create a new page with this title.<br><br> | ||
Open the <b> BIOL 116 Class 2024 </b> template page in "edit."<br> | Open the <b> BIOL 116 Class 2024 </b> template page in "edit."<br> |
Revision as of 02:07, 13 December 2024
Introduction
Wolves (Canis lupus) are iconic apex predators with a fascinating evolutionary history that spans millions of years. Modern wolves belong to the Canidae family, a diverse group of carnivorous mammals that includes domestic dogs (Canis lupus familiaris), coyotes (Canis latrans), and jackals (Canis aureus). These remarkable animals are celebrated for their adaptability, intelligence, and social behavior, which have enabled them to thrive in a variety of habitats across the globe. The evolutionary journey of wolves provides valuable insights into their survival strategies, ecological roles, and complex relationships with humans. Their lineage uncovers a story of resilience and transformation, from ancient ancestors to the apex predators we know today.The lineage of wolves traces back to the Miacids, small carnivorous mammals from the late Paleocene and Eocene epochs (approximately 62–33 million years ago). Miacids are considered the ancestors of all modern carnivores, including canids. By the late Miocene (about 10 million years ago), the family Canidae had split into three subfamilies: Hesperocyoninae, Borophaginae, and Caninae, with Caninae being the direct ancestors of modern wolves. The genus Canis emerged around 2–3 million years ago, marking a significant milestone in wolf evolution. Early species such as Canis lepophagus and Canis edwardii exhibited transitional features between earlier canids and the robust forms of modern wolves. One notable relative, Canis dirus (the dire wolf), coexisted with Canis lupus during the Pleistocene epoch. Dire wolves were specialized predators of large Ice Age megafauna, a diet that ultimately contributed to their extinction as their prey disappeared.
Compose a title for your page.
Type your exact title in the Search window, then press Go. The MicrobeWiki will invite you to create a new page with this title.
Open the BIOL 116 Class 2024 template page in "edit."
Copy ALL the text from the edit window.
Then go to YOUR OWN page; edit tab. PASTE into your own page, and edit.
At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.
Closed double brackets: ]]
Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+
Section 1 Genetics
Section titles are optional.
[1]
Include some current research, with at least one image.
Call out each figure by number (Fig. 1).
Sample citations: [1]
[2]
A citation code consists of a hyperlinked reference within "ref" begin and end codes.
For multiple use of the same inline citation or footnote, you can use the named references feature, choosing a name to identify the inline citation, and typing [4]
Second citation of Ref 1: [1]
Here we cite April Murphy's paper on microbiomes of the Kokosing river. [5]
Section 2 Microbiome
Include some current research, with a second image.
Here we cite Murphy's microbiome research again.[5]
Conclusion
You may have a short concluding section.
Overall, cite at least 5 references under References section.
References
- ↑ 1.0 1.1 1.2 Zigli DD, Brew L, Obeng-Denteh W, Kwofie S. On the Application of Homeomorphism on Amoeba Proteus. Ghana Journal of Technology. 2021 Mar 31;5(2):43-7.
- ↑ Bartlett et al.: Oncolytic viruses as therapeutic cancer vaccines. Molecular Cancer 2013 12:103.
- ↑ Lee G, Low RI, Amsterdam EA, Demaria AN, Huber PW, Mason DT. Hemodynamic effects of morphine and nalbuphine in acute myocardial infarction. Clinical Pharmacology & Therapeutics. 1981 May;29(5):576-81.
- ↑ 4.0 4.1 text of the citation
- ↑ 5.0 5.1 Murphy A, Barich D, Fennessy MS, Slonczewski JL. An Ohio State Scenic River Shows Elevated Antibiotic Resistance Genes, Including Acinetobacter Tetracycline and Macrolide Resistance, Downstream of Wastewater Treatment Plant Effluent. Microbiology Spectrum. 2021 Sep 1;9(2):e00941-21.
Edited by [Amadou Diop], student of Joan Slonczewski for BIOL 116, 2024, Kenyon College.