Prevotella Melaninogenica: Difference between revisions
Line 24: | Line 24: | ||
==Genome structure== | ==Genome structure== | ||
The genome of P. Melaninogenica was sequenced using the hemolytic strain P. melaninogenica 361B. After this strain is transformed into E. coli MC1061 and screened for hemolytic clones, four clones were identified. One of these strains, HA1001, was used for sequence analysis. It is 3,033 bp long and computer analysis found two open reading frames in the insert: glnA and phyA. However, glnA holds strong homology to the amino terminal half of the Beacteroides fragilis gene. This has circular topology with a 43% G+C content. B. Fragilis is composed of 4184 protein coding genes with 92 structural RNAs. This genome also contains 71 pseudo genes that resembles a gene however lacks a genetic function. This similarity in genome of the genus Bacteroides and the genus Prevotella also shows that they have many resemblances they share. Currently P. intermedia and P. ruminicola are being sequenced. | |||
==Cell structure and metabolism== | ==Cell structure and metabolism== |
Revision as of 20:03, 29 August 2007
A Microbial Biorealm page on the genus Prevotella Melaninogenica
Classification
Higher order taxa
Cellular organisms; Bacteria; Bacteroidetes/Chlorobi group; Bacteroidetes; Bacteroidetes (class); Bacteroidales; Prevotellaceae; Prevotella [Others may be used. Use NCBI link to find]
Species
Prevotella Melaninogenica Synonym: Bacteroides melaninogenicus subsp. melaninogenicus
NCBI: Taxonomy |
Description and significance
Prevotella Melaninogenica is generally found in the oral cavity causing opportunistic pathogen in humans and the rumen of cattle and sheep which helps to break down protein and carbohydrates food. Similar to all species of the genus Prevotella, it is strictly anaerobic, gram-negative bacterium with non-spore forming coccobacilli. When Prevotella melaninogenica grows on blood-containing media, it gives black pigment that can be easily seen in adults with rapidly progressing periodontitis lesions. This bacterium is nonmotile, therefore usually forms biofilm. In addition, P. melaninogenica includes those organisms which hydrolyze esculin but not starch and produce acid in peptone-yeast-glucose medium and peptone-yeast-mannose medium. It is catalase negative, indole negative, lipase negative and bile sensitive. It also liquefies gelatin and clots milk which shows this organism is very acidic. Because of its acidity it prevents the bovine disease of rumen acidosis however, affects milk production due to too much acid in stomach. The genus Prevotella used to be part of the genus Bacteroides, therefore, there are similarities and differences that these two genera share.
Genome structure
The genome of P. Melaninogenica was sequenced using the hemolytic strain P. melaninogenica 361B. After this strain is transformed into E. coli MC1061 and screened for hemolytic clones, four clones were identified. One of these strains, HA1001, was used for sequence analysis. It is 3,033 bp long and computer analysis found two open reading frames in the insert: glnA and phyA. However, glnA holds strong homology to the amino terminal half of the Beacteroides fragilis gene. This has circular topology with a 43% G+C content. B. Fragilis is composed of 4184 protein coding genes with 92 structural RNAs. This genome also contains 71 pseudo genes that resembles a gene however lacks a genetic function. This similarity in genome of the genus Bacteroides and the genus Prevotella also shows that they have many resemblances they share. Currently P. intermedia and P. ruminicola are being sequenced.
Cell structure and metabolism
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
Edited by student of Rachel Larsen