Nodularia Spumigena: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
==Cell Structure, Metabolism and Life Cycle== | ==Cell Structure, Metabolism and Life Cycle== | ||
Nodularia spumigena has a photosynthetic metabolism. It has a filamentous structure including enlarged cells called heterocysts. These heterocysts are specialized cells for atmospheric nitrogen fixation. No photosynthesis occurs in these specialized cells. It is responsible for a large part of the new nitrogen input into the Baltic Sea. Mycosporine like amino acids (MAAs) are produced as a photo-productive strategy against ultraviolet radiation. This allows the organism to live closer to the surface of the water, while other cyanobacteria must live in deeper waters. | |||
==Ecology and Pathogenesis== | ==Ecology and Pathogenesis== |
Revision as of 15:29, 29 April 2009
Classification
Bacteria; Cyanobacteria; Nostocales; Nostocaceae; Nodularia;
Species
Nodularia spumigena
Description and Significance
Nodularia spumigena is a filamentous, planktonic, photosynthetic, diazotrophic, bloom-forming cyanobacterium.It is usually found in salty or brackish waters. It is one of the dominating species during the extensive cyanobacterial blooms in the Baltic Sea, which are one of the largest in the world. It is also found in Lake Alexandrina, in the south-east of southern Australia. The first documented outbreak was recorded by Francis in 1878. It is commonly found near the surface of the water because is has a high tolerance of ultraviolet radiation.
Genome Structure
The genome sequencing is currently underway at the Gordan and Betty Moore Foundation Microbial Genome Sequencing Project, but it not yet finished. The DNA length is 5,316,258 nt (5 Mb). The G-C content is 42.0%. There are 4860 genes coded for and 80% of the genome is coded. The number of chromosomes and shape of the genome is not yet known.
Cell Structure, Metabolism and Life Cycle
Nodularia spumigena has a photosynthetic metabolism. It has a filamentous structure including enlarged cells called heterocysts. These heterocysts are specialized cells for atmospheric nitrogen fixation. No photosynthesis occurs in these specialized cells. It is responsible for a large part of the new nitrogen input into the Baltic Sea. Mycosporine like amino acids (MAAs) are produced as a photo-productive strategy against ultraviolet radiation. This allows the organism to live closer to the surface of the water, while other cyanobacteria must live in deeper waters.
Ecology and Pathogenesis
Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
References
Author
Page authored by _____, student of Prof. Jay Lennon at Michigan State University.