Desulfonema limicola: Difference between revisions
Line 8: | Line 8: | ||
==Description and Significance== | ==Description and Significance== | ||
Sulfate-reducing bacteria were first discovered in 1895 by Beijerinck. Since then, several species of sulfate-reducing bacteria have been described. Desulfonema limicola, which means thread-forming, sulfate reducer, mud-dweller, was described in 1983 by Widdel. | |||
Desulfonema limicola is a filamentous, multicellular, prokaryote bacterium. Cells are approximately 2.3-3 by 2-5 µm. The species is a strict anaerobe that is found in organic-rich, sulfidic sediment samples of marine and freshwater. Optimum temperature and pH are 30C and 7.6, respectively. The morphology of Desulfonema limicola allows the bacterium to glide and migrate within compact sediments. This species is important because it mineralizes dead biomass in sulfate-rich anoxic habitats. | |||
==Genome Structure== | ==Genome Structure== |
Revision as of 13:50, 24 April 2010
Classification
Domain (Bacteria); Phylum (Progeobacteria); Class (Deltaprogeobacteria); Order (Desulfobacterales); Family (Desulfobacteraceae); Genus (Desulfonema)
Species
Desulfonema limicola
Description and Significance
Sulfate-reducing bacteria were first discovered in 1895 by Beijerinck. Since then, several species of sulfate-reducing bacteria have been described. Desulfonema limicola, which means thread-forming, sulfate reducer, mud-dweller, was described in 1983 by Widdel.
Desulfonema limicola is a filamentous, multicellular, prokaryote bacterium. Cells are approximately 2.3-3 by 2-5 µm. The species is a strict anaerobe that is found in organic-rich, sulfidic sediment samples of marine and freshwater. Optimum temperature and pH are 30C and 7.6, respectively. The morphology of Desulfonema limicola allows the bacterium to glide and migrate within compact sediments. This species is important because it mineralizes dead biomass in sulfate-rich anoxic habitats.
Genome Structure
The genome has yet to be sequenced, however, Gerard Muyze is in the process of doing so. [Gordon and Betty Moore Foundation. 2010]
Cell Structure, Metabolism and Life Cycle
Interesting features of cell structure; how it gains energy; what important molecules it produces.
Ecology and Pathogenesis
Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
References
Author
Page authored by Megan Andrzejak and Laura Bast, student of Prof. Jay Lennon at Michigan State University.
<-- Do not remove this line-->