Vibrio fischeri NEU2011: Difference between revisions
No edit summary |
|||
Line 26: | Line 26: | ||
V. Fischeri can also be found living as free bacteria in small quantities surviving on decaying organic matter. | V. Fischeri can also be found living as free bacteria in small quantities surviving on decaying organic matter. | ||
V. Fischeri use proteins coded by a set of genes called the lux operon to produce bioluminescence. The light is produced in a chemical reaction where luciferin is oxidized by the enzyme luciferase. As a result of the oxidation, a blue-green light is emitted. The symbiotic relationship between a strain of the V. Fischeri and its host, the bobtail squid Euprymna scolopes, has been studied extensively. The bobtail squid acquires these bacteria from its surroundings and uses it as a protection from predators. Within several hours of being ingested, these bacteria begin to change. They decrease in size, lose their flagella, and begin to emit light. These bacteria help to eliminate the squid’s shadow caused by the moonlight above (Vibrio Fischeri). | V. Fischeri use proteins coded by a set of genes called the lux operon to produce bioluminescence. The light is produced in a chemical reaction where luciferin is oxidized by the enzyme luciferase. As a result of the oxidation, a blue-green light is emitted. The symbiotic relationship between a strain of the V. Fischeri and its host, the bobtail squid Euprymna scolopes, has been studied extensively. The bobtail squid acquires these bacteria from its surroundings and uses it as a protection from predators. Within several hours of being ingested, these bacteria begin to change. They decrease in size, lose their flagella, and begin to emit light. These bacteria help to eliminate the squid’s shadow caused by the moonlight above (Vibrio Fischeri-Euprymna). | ||
The isolation and cloning of the lux gene from V. Fischeri, and their use as a reporter gene, have provided scientists with many valuable research techniques. The lux gene has enabled scientists to visually study and examine many living organisms at a cellular level. Likewise, V. Fischeri cells have been made commercially available to ecotoxicologists to detect contaminants in the environment more quickly and cheaper than most other available methods (Madigan M). | The isolation and cloning of the lux gene from V. Fischeri, and their use as a reporter gene, have provided scientists with many valuable research techniques. The lux gene has enabled scientists to visually study and examine many living organisms at a cellular level. Likewise, V. Fischeri cells have been made commercially available to ecotoxicologists to detect contaminants in the environment more quickly and cheaper than most other available methods (Madigan M). | ||
Line 32: | Line 32: | ||
The genome of V.fisheri contains 4273718 nucleotides, 3817 protein genes and 165 RNA genes. The chromosomes I and II are circular. The sequence of the chromosome 1 is NC_006840 and its lenght is equal to 2897536. The sequence of the chromosome II is NC_006842 and its lenght is equal to 1330333. The ES114 strain is characterized by a circular plasmid known as pES100. The number of taxonomy of the Vibrio fisheri is 312309 (KEGG). | The genome of V.fisheri contains 4273718 nucleotides, 3817 protein genes and 165 RNA genes. The chromosomes I and II are circular. The sequence of the chromosome 1 is NC_006840 and its lenght is equal to 2897536. The sequence of the chromosome II is NC_006842 and its lenght is equal to 1330333. The ES114 strain is characterized by a circular plasmid known as pES100. The number of taxonomy of the Vibrio fisheri is 312309 (KEGG). | ||
==Pathology== | |||
Vibrio fischeri itself is non-pathogenic and is classified as a mutualistic symbiont. The V. fischeri species is known for its beneficial association with the light organ of the bobtail squid, Euprymna scolopes (Vibrio fischeri-Encyclopedia). | |||
In the genus of Vibrio, are several dozen species known to participate in a diversity of pathogenic interactions with other organisms. Among these species are Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Vibrio infections are characterized in humans as a foodborne illness. This would be due to the consumption of contaminated seafood or the exposure of an open wound to tainted seawater. Vibrio infections present themselves are gastroenteritis issues including diarrhea, nausea, vomiting, and headaches. Infections due to open wound sites would include swelling at the site, pain, erythema, and necrosis. V. vulnificus is responsible for causing septicemia in an infected individual. Of the pathogenic species of Vibrio, V. vulnificus is linked with the highest fatality rate (Fox). | |||
==References== | ==References== | ||
Line 42: | Line 49: | ||
* "V. Fischeri." The University of Nottingham. Web. 13 Feb. 2011. http://www.nottingham.ac.uk/quorum/fischerimain.htm. | * "V. Fischeri." The University of Nottingham. Web. 13 Feb. 2011. http://www.nottingham.ac.uk/quorum/fischerimain.htm. | ||
* "Vibrio Fischeri - Encyclopedia Article - Citizendium." Welcome to Citizendium - Citizendium. 16 Feb. 2010. Web. 27 Mar. 2011. http://en.citizendium.org/wiki/Vibrio_fischeri. | |||
* "Vibrio Fischeri - Euprymna Scolopes Symbiosis." Integrated Genomics. Aug. 2007. Web. 14 Feb. 2011. http://web.uconn.edu/mcbstaff/graf/VfEs/VfEssym.htm. | * "Vibrio Fischeri - Euprymna Scolopes Symbiosis." Integrated Genomics. Aug. 2007. Web. 14 Feb. 2011. http://web.uconn.edu/mcbstaff/graf/VfEs/VfEssym.htm. |
Revision as of 13:20, 30 March 2011
A page on the microorganism Vibrio fischeri
Classification
Higher order taxa
Vibrio fischeri
- Kingdom: Bacteria
- Phylum: Proteobacteria
- Class: Gamma Proteobacteria
- Order: Vibrionales
- Family: Vibrionaceae
- Genus: Vibrio
- Species: V. fischeri
Description and Significance
Vibrio Fischeri is a member of the phylum proteobacteria. These bacteria are motile, gram-negative rods that are found in temperate and subtropical waters. These heterotrophic bacteria use flagella as a means of movement and they are most famous for their bioluminescence properties. V. Fischeri is mainly found living in symbiosis with various deep sea marine animals such as monocentrid fishes and bobtail squid. V. Fischeri is found within unique light-organs or as part of the normal gut of these marine animals (V. Fischeri).
V. Fischeri can also be found living as free bacteria in small quantities surviving on decaying organic matter. V. Fischeri use proteins coded by a set of genes called the lux operon to produce bioluminescence. The light is produced in a chemical reaction where luciferin is oxidized by the enzyme luciferase. As a result of the oxidation, a blue-green light is emitted. The symbiotic relationship between a strain of the V. Fischeri and its host, the bobtail squid Euprymna scolopes, has been studied extensively. The bobtail squid acquires these bacteria from its surroundings and uses it as a protection from predators. Within several hours of being ingested, these bacteria begin to change. They decrease in size, lose their flagella, and begin to emit light. These bacteria help to eliminate the squid’s shadow caused by the moonlight above (Vibrio Fischeri-Euprymna). The isolation and cloning of the lux gene from V. Fischeri, and their use as a reporter gene, have provided scientists with many valuable research techniques. The lux gene has enabled scientists to visually study and examine many living organisms at a cellular level. Likewise, V. Fischeri cells have been made commercially available to ecotoxicologists to detect contaminants in the environment more quickly and cheaper than most other available methods (Madigan M).
Genome Structure
The genome of V.fisheri contains 4273718 nucleotides, 3817 protein genes and 165 RNA genes. The chromosomes I and II are circular. The sequence of the chromosome 1 is NC_006840 and its lenght is equal to 2897536. The sequence of the chromosome II is NC_006842 and its lenght is equal to 1330333. The ES114 strain is characterized by a circular plasmid known as pES100. The number of taxonomy of the Vibrio fisheri is 312309 (KEGG).
Pathology
Vibrio fischeri itself is non-pathogenic and is classified as a mutualistic symbiont. The V. fischeri species is known for its beneficial association with the light organ of the bobtail squid, Euprymna scolopes (Vibrio fischeri-Encyclopedia).
In the genus of Vibrio, are several dozen species known to participate in a diversity of pathogenic interactions with other organisms. Among these species are Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Vibrio infections are characterized in humans as a foodborne illness. This would be due to the consumption of contaminated seafood or the exposure of an open wound to tainted seawater. Vibrio infections present themselves are gastroenteritis issues including diarrhea, nausea, vomiting, and headaches. Infections due to open wound sites would include swelling at the site, pain, erythema, and necrosis. V. vulnificus is responsible for causing septicemia in an infected individual. Of the pathogenic species of Vibrio, V. vulnificus is linked with the highest fatality rate (Fox).
References
- KEGG. Vibrio Fischeri Genome Information. Web. 18 Feb. 2001. http://www.genome.jp/kegg-bin/show_organism?org=vfi.
- Koropatnick, Tanya. "Squid/Vibrio." SERC. Nov. 2006. Web. 21 Feb. 2011. http://serc.carleton.edu/microbelife/topics/marinesymbiosis/squid-vibrio/.
- Madigan M, Martinko J (editors) (2005). Brock Biology of Microorganisms (13th ed.). Prentice Hall.
- "V. Fischeri." The University of Nottingham. Web. 13 Feb. 2011. http://www.nottingham.ac.uk/quorum/fischerimain.htm.
- "Vibrio Fischeri - Encyclopedia Article - Citizendium." Welcome to Citizendium - Citizendium. 16 Feb. 2010. Web. 27 Mar. 2011. http://en.citizendium.org/wiki/Vibrio_fischeri.
- "Vibrio Fischeri - Euprymna Scolopes Symbiosis." Integrated Genomics. Aug. 2007. Web. 14 Feb. 2011. http://web.uconn.edu/mcbstaff/graf/VfEs/VfEssym.htm.