Nitrobacter winogradskyi: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 54: Line 54:
Shawn R. Starkenburg,1 Patrick S. G. Chain,2,3 Luis A. Sayavedra-Soto,1 Loren Hauser,4 Miriam L. Land,4 Frank W. Larimer,4 Stephanie A. Malfatti,3 Martin G. Klotz,5 Peter J. Bottomley,1 Daniel J. Arp,1 and William J. Hickey6*.2006. " Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Nb-255."Applied and Environmental Microbiology, March 2006, p. 2050-2063, Vol. 72, No. 3
Shawn R. Starkenburg,1 Patrick S. G. Chain,2,3 Luis A. Sayavedra-Soto,1 Loren Hauser,4 Miriam L. Land,4 Frank W. Larimer,4 Stephanie A. Malfatti,3 Martin G. Klotz,5 Peter J. Bottomley,1 Daniel J. Arp,1 and William J. Hickey6*.2006. " Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Nb-255."Applied and Environmental Microbiology, March 2006, p. 2050-2063, Vol. 72, No. 3
0099-2240/06/   
0099-2240/06/   
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Display&DB=pubmed
Franco-Rivera A, Paniagua-Michel J, Zamora-Castro J.2007. "Characterization and performance of constructed nitrifying biofilms during nitrogen bioremediation of a wastewater effluent." J Ind Microbiol Biotechnol. 2007 Apr;34(4):279-87. 


http://rice.tigr.org/tigr-scripts/CMR2/GenomeTabs.spl?database=ntnw01
http://rice.tigr.org/tigr-scripts/CMR2/GenomeTabs.spl?database=ntnw01

Revision as of 22:47, 30 April 2007

Template:Biorealm genus

Classification

Higher order taxa

Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bradyrhizobiaceae;Nitrobacter


Genus

Nitrobacter winogradskyi Nb-255


NCBI: Taxonomy

Description and significance

Nitrobacter winogradsky can be found living in many soils, natural stones as well as both fresh water and salt water. They have many differing rod shaped cells which divide through polar swelling. It contains an asymmetrical membrane system, carboxysomes along with intracellular inclusion bodies. It can grow in both aerobic and anarobic conditions with nitrate as its electron acceptor.

 It is important to sequence the genome of Nitrobacter winogradskyi to understand the relation between itself and other bacteria involved  in the nitrogen cycle in order to improve nitrogen management.

Genome structure

Nitrobacter winogradskyi has a circlular DNA chormosome with the length of 3,402,093 bp encoding 3,143 predicted proteins. The genome is make up of around 62% GC pairs. 2566 were assigned a role in catagories.

Cell structure and metabolism

Nitrobacter winogradskyi are gram negative bacteria which play a key role in the nitrogen cycle by converting nitrite to nitrate. It derives its energy through nitrite oxidation and carbon dioxide fixation, which it can do simultaniously, thus acting as a chemolithoautotroph. In the absence of nitrite it uses soley carbon sources and acts as a chemoorganoheterotroph.

Ecology

It interacts with ammonium oxidizing bacteria which also plays a key role in the nitrogen cycle. Ammonium oxidizing bacteria inititaites nitrification, in which nitrite is the end product. Nitrobacter winogradskyi then proceeds to oxidize nitrite to nitrate. Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

There is no known virulence

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Current reseach has been done on the genome sequence of Nirtobacter winogradsky in oder to better understand its role in the nitrogen cycle. It was found that 10% of the genome codes for genes involved in transport and secretion. They hope that its genome will serve as a reference to study the mechanism which controls nitrite oxidation and its interaction with other processes.

Current research is being done on how nitrofying bacteria such such as nitrobacter can be used for ammonium removal of waistwater effluents. In this study it was shown that using biofilms including nitrobacter winogradskyi which could be a lead to a promising and inexpensive way of treating waistwater for bioremediation of effluents.

References

example: http://genome.jgi-psf.org/finished_microbes/nitwi/nitwi.home.html

http://www.microbionet.com.au/nwinogradskyi.htm

http://aem.asm.org/cgi/content/full/72/3/2050?view=long&pmid=16517654 Shawn R. Starkenburg,1 Patrick S. G. Chain,2,3 Luis A. Sayavedra-Soto,1 Loren Hauser,4 Miriam L. Land,4 Frank W. Larimer,4 Stephanie A. Malfatti,3 Martin G. Klotz,5 Peter J. Bottomley,1 Daniel J. Arp,1 and William J. Hickey6*.2006. " Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Nb-255."Applied and Environmental Microbiology, March 2006, p. 2050-2063, Vol. 72, No. 3 0099-2240/06/

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Display&DB=pubmed Franco-Rivera A, Paniagua-Michel J, Zamora-Castro J.2007. "Characterization and performance of constructed nitrifying biofilms during nitrogen bioremediation of a wastewater effluent." J Ind Microbiol Biotechnol. 2007 Apr;34(4):279-87.



http://rice.tigr.org/tigr-scripts/CMR2/GenomeTabs.spl?database=ntnw01 Glockner, F. O., M. Kube, M. Bauer, H. Teeling, T. Lombardot, W. Ludwig, D. Gade, A. Beck, K Borzym, K Heitmann, R. Rabus, H. Schlesner, R. Amann, and R. Reinhardt. 2003. "Complete genome sequence of the marine planctomycete Pirellula sp. strain 1." Proceedings of the National Acedemy of Sciences, vol. 100, no. 14. (8298-8303)


Edited by student of Rachel Larsen and Kit Pogliano