Gramella forsetii: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
No edit summary
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Uncurated}}
{{Biorealm Genus}}
{{Biorealm Genus}}


Line 7: Line 8:
Kingdom: Bacteria; Group: Bacteroidetes; Phylum: formerly Cytophaga-Flavobacteria-Bacteroides(CFB)
Kingdom: Bacteria; Group: Bacteroidetes; Phylum: formerly Cytophaga-Flavobacteria-Bacteroides(CFB)


===Species===
===Genus and Species===


''Gramella Genus''
''Gramella forsetii''


==Description and significance==
==Description and significance==
This specie was first found and isolated from concentrated seawater collected in the German Bight of the North Sea during a phytoplankton bloom. They represent significant part of free-living microbial assemblages in nutrient-rich microenvironments. Organisms of this group are significant in that they specialize in degradation of high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool. Thus, they hold a major role of Bacteroidetes in the marine carbon cycle.
This species was first found and isolated from concentrated seawater collected in the German Bight of the North Sea during a phytoplankton bloom. They represent significant part of free-living microbial assemblages in nutrient-rich microenvironments. Organisms of this group are significant in that they specialize in degradation of high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool. Thus, they hold a major role of Bacteroidetes in the marine carbon cycle.


==Genome structure==
==Genome structure==
'Gramella forsetii' KT0803.
'Gramella forsetii' KT0803.
Size: 3 Mb; Chromosome: 1
Size: 3.8 Mb; Chromosome: 1, Circular


Analysis of the genomes reveal a substantial suite of genes that encode hydrolytic enzymes. They are a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.
Analysis of the genomes reveals a substantial suite of genes that encode hydrolytic enzymes. They have a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.


==Cell structure and metabolism==
==Cell structure and metabolism==
This marine Bacteroidetes has a gram negative like outer structure as well as a rod shape appearance. Because they are found on macroscopic organic matter particles (marine snow), their metabolism pertains to a non-halophilic, aerobic, and mesophilic environment. Specialized genes encoding for hydrolytic enzymes reveals adaptations to degradation of polymeric organic matter.
This marine Bacteroidetes has a gram-negative like outer structure as well as a rod shape appearance. Because they are found on macroscopic organic matter particles (marine snow), their metabolism pertains to a non-halophilic, aerobic, and mesophilic environment. Specialized genes encoding for hydrolytic enzymes reveals adaptations to degradation of polymeric organic matter.


==Ecology==
==Ecology==
This organism is found in seawater on organic matter particles. Their abundance and distribution pattern reveal their capability to live in diverse and nutrient-rich microenvironments. Their contributions to the environment are dedicated to the marine carbon cycle.
This organism is found in seawater on organic matter particles. Their abundance and distribution pattern reveal their capability to live in diverse and nutrient-rich micro-environments. Their contributions to the environment are dedicated to the marine carbon cycle.
 


==Pathology==
Related organisms that are also in the Group Bacteroidetes may include many important periodontal pathogens.


==Application to Biotechnology==
==Application to Biotechnology==
Their ability to degrade high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool proves Bacteroidetes' significant contribution in the marine carbon cycle.
Despite a lack of comprehensive molecular data on this organism, we can be sure that they encode a series of genes that produce enzymes which serve in the process of degradation of organic matter.


==Current Research==
The Max Planck Institute for Marine Microbiology is currently conducting a comparative genome analysis on strain ''Gramella forsetii KT0803''. They isolated the organism from concentrated seawater in the North Sea. They sampled surface waters weekly, and bacteria were grown on agar plates enriched with synthetic seawater medium. ''Gramella forsetii'' was isolated from a single coloy and grown in liquid culture. By identifying its 16S rRNA phylogeny, it was then assigned to the Gramella genus. They are looking deeper into the mechanism of adaptations to degradation of polymeric organic matter as well as understanding its influence on marine microenvironments and the habitat it resides.


Does this organism produce any useful compounds or enzymes?  What are they and how are they used?
A close related organism named ''Gramella echinicola'' was isolated from the sea urchin ''Strongylocentrotus intermedius'', which inhabits the Sea of Japan. This study was conducted in the Pacific Institute of Bioorganic Chemistry. This novel marine bacterium, strain KMM 6050T has similar cellular structures as well as genome lineage. The strain studied was aerobic, heterotrophic, yellow-orange-pigmented, motile by gliding, Gram-negative and oxidase-, catalase-, beta-galactosidase- and alkaline phosphatase-positive. More studies are being conducted at the moment.
 
==Current Research==
Members of the Bacteroidetes, formerly known as the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum, are among the major taxa of marine heterotrophic bacterioplankton frequently found on macroscopic organic matter particles (marine snow). In addition, they have been shown to also represent a significant part of free-living microbial assemblages in nutrient-rich microenvironments. Their abundance and distribution pattern in combination with enzymatic activity studies has led to the notion that organisms of this group are specialists for degradation of high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool, implying a major role of Bacteroidetes in the marine carbon cycle. Despite their ecological importance, comprehensive molecular data on organisms of this group have been scarce so far. Here we report on the first whole genome analysis of a marine Bacteroidetes representative, 'Gramella forsetii' KT0803. Functional analysis of the predicted proteome disclosed several traits which in joint consideration suggest a clear adaptation of this marine Bacteroidetes representative to the degradation of high molecular weight organic matter, such as a substantial suite of genes encoding hydrolytic enzymes, a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.


Enter summaries of the most recent research here--at least three required
The Hong Kong University of Science and Technology has also conducted studies on another related organism named ''Gramella portivictoriae'', a novel member of the family Flavobacteriaceae. Gramella portivictoriae is a yellow-pigmented, Gram-negative, slowly gliding, rod-shaped, strictly aerobic bacterium UST040801-001T. It was isolated from marine sediment from Victoria Harbour. The gene sequence was determined using terminator method. Anaerobic growth was observed.


==References==
==References==
Line 43: Line 44:
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed Bauer, M. Kube, M., Teeling, H., Richter, M., Lombardot, T., Allers, E., Wurdemann, C.A., Quast, C., Kuhl, H., Knaust, F., Woebken, D., Bischof, K., Mussmann, M., Choudhuri, J.V., Meyer, F., Reinhardt, R., Amann, R.I., and Glockner, F.O. "Whole genome analysis of the marine Bacteroidetes 'Gramella forsetii' reveals adaptations to degradation of polymeric organic matter." Environ. Microbiol. (2006) 8:2201-2213. Published online 4 October 2006.]  
[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed Bauer, M. Kube, M., Teeling, H., Richter, M., Lombardot, T., Allers, E., Wurdemann, C.A., Quast, C., Kuhl, H., Knaust, F., Woebken, D., Bischof, K., Mussmann, M., Choudhuri, J.V., Meyer, F., Reinhardt, R., Amann, R.I., and Glockner, F.O. "Whole genome analysis of the marine Bacteroidetes 'Gramella forsetii' reveals adaptations to degradation of polymeric organic matter." Environ. Microbiol. (2006) 8:2201-2213. Published online 4 October 2006.]  


[http://ijs.sgmjournals.org/cgi/reprint/55/6/2497.pdf Stanley C.K. Lau, Mandy M. Y. Tsoi, Xiancui Li, loulia Plakhotnikova, Sergey Dobretsov, Po-Keung Wong and Pei-Yuan Qian "Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriacease isolated from marine sediment." ''International Journal of Systematic and Evolutionary Microbiology''. 2005. 55,2497-2500.]


[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed Gupta RS, Lorenzini E. "Phylogeny and Molecular Signatures (Conserved Proteins and Indels) that are Specific for the Bacteroidetes and Chlorobi Species." ''BMC Evol. Biol. 2001. 1471-2148.]


[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "''Palaeococcus ferrophilus'' gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". ''International Journal of Systematic and Evolutionary Microbiology''. 2000. Volume 50. p. 489-500.]


Edited by student of [mailto:ralarsen@ucsd.edu Rachel Larsen] and Kit Pogliano
edited KMG

Latest revision as of 20:11, 18 August 2010

This student page has not been curated.

A Microbial Biorealm page on the genus Gramella forsetii

Classification

Higher order taxa

Kingdom: Bacteria; Group: Bacteroidetes; Phylum: formerly Cytophaga-Flavobacteria-Bacteroides(CFB)

Genus and Species

Gramella forsetii

Description and significance

This species was first found and isolated from concentrated seawater collected in the German Bight of the North Sea during a phytoplankton bloom. They represent significant part of free-living microbial assemblages in nutrient-rich microenvironments. Organisms of this group are significant in that they specialize in degradation of high molecular weight compounds in both the dissolved and particulate fraction of the marine organic matter pool. Thus, they hold a major role of Bacteroidetes in the marine carbon cycle.

Genome structure

'Gramella forsetii' KT0803. Size: 3.8 Mb; Chromosome: 1, Circular

Analysis of the genomes reveals a substantial suite of genes that encode hydrolytic enzymes. They have a predicted preference for polymeric carbon sources and a distinct capability for surface adhesion.

Cell structure and metabolism

This marine Bacteroidetes has a gram-negative like outer structure as well as a rod shape appearance. Because they are found on macroscopic organic matter particles (marine snow), their metabolism pertains to a non-halophilic, aerobic, and mesophilic environment. Specialized genes encoding for hydrolytic enzymes reveals adaptations to degradation of polymeric organic matter.

Ecology

This organism is found in seawater on organic matter particles. Their abundance and distribution pattern reveal their capability to live in diverse and nutrient-rich micro-environments. Their contributions to the environment are dedicated to the marine carbon cycle.

Pathology

Related organisms that are also in the Group Bacteroidetes may include many important periodontal pathogens.

Application to Biotechnology

Despite a lack of comprehensive molecular data on this organism, we can be sure that they encode a series of genes that produce enzymes which serve in the process of degradation of organic matter.

Current Research

The Max Planck Institute for Marine Microbiology is currently conducting a comparative genome analysis on strain Gramella forsetii KT0803. They isolated the organism from concentrated seawater in the North Sea. They sampled surface waters weekly, and bacteria were grown on agar plates enriched with synthetic seawater medium. Gramella forsetii was isolated from a single coloy and grown in liquid culture. By identifying its 16S rRNA phylogeny, it was then assigned to the Gramella genus. They are looking deeper into the mechanism of adaptations to degradation of polymeric organic matter as well as understanding its influence on marine microenvironments and the habitat it resides.

A close related organism named Gramella echinicola was isolated from the sea urchin Strongylocentrotus intermedius, which inhabits the Sea of Japan. This study was conducted in the Pacific Institute of Bioorganic Chemistry. This novel marine bacterium, strain KMM 6050T has similar cellular structures as well as genome lineage. The strain studied was aerobic, heterotrophic, yellow-orange-pigmented, motile by gliding, Gram-negative and oxidase-, catalase-, beta-galactosidase- and alkaline phosphatase-positive. More studies are being conducted at the moment.

The Hong Kong University of Science and Technology has also conducted studies on another related organism named Gramella portivictoriae, a novel member of the family Flavobacteriaceae. Gramella portivictoriae is a yellow-pigmented, Gram-negative, slowly gliding, rod-shaped, strictly aerobic bacterium UST040801-001T. It was isolated from marine sediment from Victoria Harbour. The gene sequence was determined using terminator method. Anaerobic growth was observed.

References

Bauer, M. Kube, M., Teeling, H., Richter, M., Lombardot, T., Allers, E., Wurdemann, C.A., Quast, C., Kuhl, H., Knaust, F., Woebken, D., Bischof, K., Mussmann, M., Choudhuri, J.V., Meyer, F., Reinhardt, R., Amann, R.I., and Glockner, F.O. "Whole genome analysis of the marine Bacteroidetes 'Gramella forsetii' reveals adaptations to degradation of polymeric organic matter." Environ. Microbiol. (2006) 8:2201-2213. Published online 4 October 2006.

Stanley C.K. Lau, Mandy M. Y. Tsoi, Xiancui Li, loulia Plakhotnikova, Sergey Dobretsov, Po-Keung Wong and Pei-Yuan Qian "Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriacease isolated from marine sediment." International Journal of Systematic and Evolutionary Microbiology. 2005. 55,2497-2500.

Gupta RS, Lorenzini E. "Phylogeny and Molecular Signatures (Conserved Proteins and Indels) that are Specific for the Bacteroidetes and Chlorobi Species." BMC Evol. Biol. 2001. 1471-2148.


edited KMG