Bombella apis: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
 
(62 intermediate revisions by the same user not shown)
Line 4: Line 4:


Bacteria; Pseudomonadota; Alphaproteobacteria; Rhodospirillales; Acetobacteraceae; Bombella
Bacteria; Pseudomonadota; Alphaproteobacteria; Rhodospirillales; Acetobacteraceae; Bombella
===Species===
===Species===


Line 14: Line 15:


==Description and Significance==
==Description and Significance==
Bombella apis is a gram-negative bacteria that is rod-shaped. It is an aerobic bacteria.
<i>Bombella apis</i> is a rod-shaped, nonmotile, aerobic Gram-negative bacterium. <i>Bombella apis</i> can be found in the midgut of honey bees<ref name="BacDive"><i>Bombella apis</i> JCM 31623 is an obligate aerobe, mesophilic, Gram-negative Proteobacterium that forms circular colonies and was isolated from midgut of the honey bee in South Korea, BacDive. https://bacdive.dsmz.de/strain/140538. Accessed April 28, 2022</ref>.
 
<i>B. apis</i> has been cultured in locations including Bloomington, Indiana and South Korea, where it was originally found<ref name="BacDive"/><ref name="Smith>Smith et al., Draft Genome Sequence of a <i>Bombella apis</i> Strain Isolated from Honey Bees, Microbiology Resource Announcements, Volume 8, Issue 47. https://journals.asm.org/doi/full/10.1128/MRA.01329-19 Accessed April 28, 2022</ref>.


==Genome Structure==
==Genome Structure==
Describe the size and content of the genome. How many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?
<i>Bombella apis</i> has a genome comprised of a single circular chromosome that is 2,086,308 bp long and contains 1,975 protein-coding genes. It has a GC content of 59.56%<ref name="Smith2"> Smith et al., Genomic Signatures of Honey Bee Association in an Acetic Acid Symbiont, Genome Biology and Evolution. https://pubmed.ncbi.nlm.nih.gov/32870981/ Accessed April 28, 2022 </ref>.


==Cell Structure, Metabolism and Life Cycle==


==Cell Structure, Metabolism and Life Cycle==
<i>Bombella apis</i> is an acetic acid bacterium that does oxidative fermentation. It acquires nitrogen from ammonia, carbon from glucose, and energy from sugars and amino acids. <i>B. apis</i> has also been found to thrive in 30% glucose solutions<ref name="Yun"> Yun et al., Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee, International Journal of Systematic and Evolutionary Microbiology, Vol. 67, Issue 7. https://www.semanticscholar.org/paper/Bombella-apis-sp.-nov.,-an-acetic-acid-bacterium-of-Yun-Lee/6bc7277be53f849c46d5ff573d8c510c4946936c </ref>.
Interesting features of cell structure; how it gains energy; what important molecules it produces.


Their cells are non-motile, aerobic, and Gram-negative rods that are 1.0–2.5 µm in length and 0.5–0.6 µm wide<ref name="BacDive"/>.


==Ecology and Pathogenesis==
==Ecology and Pathogenesis==
Habitat; symbiosis; biogeochemical significance; contributions to environment.<br>
 
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.<br><br>
<i>B. apis</i> is found in the midgut of honey bees (<i>Apis mellifera</i>)<ref name="Yun"/>. It occupies well-defined niches within the hive: the queen, nurse pharyngeal glands, nurse crops, food stores, and royal jelly. It spreads as nurse bees feed other hive members<ref name="Smith2"/>.
 
<i>Bombella apis</i> has been sequenced and found to be closely associated with nectar, developing honey bee larvae, and honey bee queens<ref name="Smith2"/>.
 
<i>Bombella apis</i> has also been found to be able to protect themselves against bacteriophages<ref name="Smith2"/>.
 
<i>B. apis</i> has been shown to inhibit <i>Aspergillus flavus</i> and <i>Beauveria bassiano</i>. The mechanism hypothesized for this inhibition is a possible secreted polyketide. All the known strains have a type 1 polyketide sythase gene cluster, a feature common to many symbionts with antifungal activity. This mechanism has been shown to inhibit fungal growth in-vitro and in-vivo<ref name="Miller"> Miller et al., A Bacterial Symbiont Protects Honey Bees from Fungal Disease, mBio, Volume 12, Issue 3. https://journals.asm.org/doi/full/10.1128/mBio.00503-21 Accessed 28 April 2022 </ref>.
 
<i>B. apis</i> contributes to the environment because <i>A. mellifera</i> is responsible for 1/3 of American food consumed<ref name="FDA"> Food and Drug Administration, Helping Agriculture’s Helpful Honey Bees. https://www.fda.gov/animal-veterinary/animal-health-literacy/helping-agricultures-helpful-honey-bees Accessed April 28 2022 </ref>. They are an important pollinator that one survey found ~5% of worldwide flowering plant species depend on, and 51% of flowering plant species are at least sometimes pollinated by<ref name="Hung"> Hung et al., The worldwide importance of honey bees as pollinators in natural habitats, The Royal Society, Volume 285, Issue 1870. https://royalsocietypublishing.org/doi/10.1098/rspb.2017.2140 Accessed April 28, 2022 </ref>. Colony Collapse Disorder (CCD) is a major threat to <i>A. mellifera</i> that may lead to the extinction of the species. CCD is known to be contributed to by fungal infection, and artificial fungicides may also contribute to CCD<ref name="Pettis"> Pettis et al., Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae, PLoS One. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0070182&type=printable Accessed April 28, 2022 </ref>. <i>B. apis</i> could be a possible counteragent in CCD by combatting fungal infections and partially reducing the need for artificial fungicidal chemicals.


==References==
==References==
[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "''Palaeococcus ferrophilus'' gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". ''International Journal of Systematic and Evolutionary Microbiology''. 2000. Volume 50. p. 489-500.]
<references />


==Author==
==Author==
Page authored by Cullen Vincent, student of Prof. Jay Lennon at IndianaUniversity.
Page authored by Emily Taylor, Cullen Vincent, and Alexis Vo, students of Prof. Jay Lennon at IndianaUniversity.


<!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]]
<!-- Do not remove this line-->[[Category:Pages edited by students of Jay Lennon at Indiana University]]

Latest revision as of 05:04, 28 April 2022

This student page has not been curated.

Classification

Bacteria; Pseudomonadota; Alphaproteobacteria; Rhodospirillales; Acetobacteraceae; Bombella

Species

NCBI: Taxonomy

Bombella apis

Description and Significance

Bombella apis is a rod-shaped, nonmotile, aerobic Gram-negative bacterium. Bombella apis can be found in the midgut of honey bees[1].

B. apis has been cultured in locations including Bloomington, Indiana and South Korea, where it was originally found[1][2].

Genome Structure

Bombella apis has a genome comprised of a single circular chromosome that is 2,086,308 bp long and contains 1,975 protein-coding genes. It has a GC content of 59.56%[3].

Cell Structure, Metabolism and Life Cycle

Bombella apis is an acetic acid bacterium that does oxidative fermentation. It acquires nitrogen from ammonia, carbon from glucose, and energy from sugars and amino acids. B. apis has also been found to thrive in 30% glucose solutions[4].

Their cells are non-motile, aerobic, and Gram-negative rods that are 1.0–2.5 µm in length and 0.5–0.6 µm wide[1].

Ecology and Pathogenesis

B. apis is found in the midgut of honey bees (Apis mellifera)[4]. It occupies well-defined niches within the hive: the queen, nurse pharyngeal glands, nurse crops, food stores, and royal jelly. It spreads as nurse bees feed other hive members[3].

Bombella apis has been sequenced and found to be closely associated with nectar, developing honey bee larvae, and honey bee queens[3].

Bombella apis has also been found to be able to protect themselves against bacteriophages[3].

B. apis has been shown to inhibit Aspergillus flavus and Beauveria bassiano. The mechanism hypothesized for this inhibition is a possible secreted polyketide. All the known strains have a type 1 polyketide sythase gene cluster, a feature common to many symbionts with antifungal activity. This mechanism has been shown to inhibit fungal growth in-vitro and in-vivo[5].

B. apis contributes to the environment because A. mellifera is responsible for 1/3 of American food consumed[6]. They are an important pollinator that one survey found ~5% of worldwide flowering plant species depend on, and 51% of flowering plant species are at least sometimes pollinated by[7]. Colony Collapse Disorder (CCD) is a major threat to A. mellifera that may lead to the extinction of the species. CCD is known to be contributed to by fungal infection, and artificial fungicides may also contribute to CCD[8]. B. apis could be a possible counteragent in CCD by combatting fungal infections and partially reducing the need for artificial fungicidal chemicals.

References

  1. 1.0 1.1 1.2 Bombella apis JCM 31623 is an obligate aerobe, mesophilic, Gram-negative Proteobacterium that forms circular colonies and was isolated from midgut of the honey bee in South Korea, BacDive. https://bacdive.dsmz.de/strain/140538. Accessed April 28, 2022
  2. Smith et al., Draft Genome Sequence of a Bombella apis Strain Isolated from Honey Bees, Microbiology Resource Announcements, Volume 8, Issue 47. https://journals.asm.org/doi/full/10.1128/MRA.01329-19 Accessed April 28, 2022
  3. 3.0 3.1 3.2 3.3 Smith et al., Genomic Signatures of Honey Bee Association in an Acetic Acid Symbiont, Genome Biology and Evolution. https://pubmed.ncbi.nlm.nih.gov/32870981/ Accessed April 28, 2022
  4. 4.0 4.1 Yun et al., Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee, International Journal of Systematic and Evolutionary Microbiology, Vol. 67, Issue 7. https://www.semanticscholar.org/paper/Bombella-apis-sp.-nov.,-an-acetic-acid-bacterium-of-Yun-Lee/6bc7277be53f849c46d5ff573d8c510c4946936c
  5. Miller et al., A Bacterial Symbiont Protects Honey Bees from Fungal Disease, mBio, Volume 12, Issue 3. https://journals.asm.org/doi/full/10.1128/mBio.00503-21 Accessed 28 April 2022
  6. Food and Drug Administration, Helping Agriculture’s Helpful Honey Bees. https://www.fda.gov/animal-veterinary/animal-health-literacy/helping-agricultures-helpful-honey-bees Accessed April 28 2022
  7. Hung et al., The worldwide importance of honey bees as pollinators in natural habitats, The Royal Society, Volume 285, Issue 1870. https://royalsocietypublishing.org/doi/10.1098/rspb.2017.2140 Accessed April 28, 2022
  8. Pettis et al., Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae, PLoS One. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0070182&type=printable Accessed April 28, 2022

Author

Page authored by Emily Taylor, Cullen Vincent, and Alexis Vo, students of Prof. Jay Lennon at IndianaUniversity.