Korarchaeum cryptofilum: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Introduction== | ==Introduction== | ||
<i>Candidatus</i> Korarchaeum cryptofilum is a species of the proposed phylum <i>Korarchaeota</i>, or Xenarchaeota of the Archaea. The Archean is found mainly in hydrothermal environments such as hot springs, shallow water, and deep ocean. The organism's genome has mainly been studied to open understanding of Archaean evolution. | <i>Candidatus</i> Korarchaeum cryptofilum is a species of the proposed phylum <i>Korarchaeota</i>, or Xenarchaeota of the Archaea. The phylum is notoriously difficult to study given the environment in which it lives.<ref>[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449320/?tool=pmcentrez&report=abstract Nealson, Ken. “A Korarchaeote yields to genome sequencing.” Proceedings of the National Academy of Sciences of the United States of America vol. 105,26 (2008): 8805-6. doi:10.1073/pnas.0804670105]</ref> The Archean phylum is found mainly in hydrothermal environments such as hot springs, shallow water, and deep ocean. The organism's genome has mainly been studied to open understanding of Archaean evolution due to its distant detachment on the Archaea phyla. | ||
<br> <i>Korarchaeum cryptofilum</i> is a heterotroph, mostly living through anaerobic metabolism | |||
Select a topic about genetics or evolution in a specific organism or ecosystem. | Select a topic about genetics or evolution in a specific organism or ecosystem. | ||
Select a topic about genetics or evolution in a specific organism or ecosystem.<br> | Select a topic about genetics or evolution in a specific organism or ecosystem.<br> | ||
Line 33: | Line 33: | ||
==Genetics and Structure== | ==Genetics and Structure== | ||
<br> <i>Korarchaeum cryptofilum</i> is a heterotroph, mostly living through anaerobic metabolism of peptide and amino acids. The organism uses enzymes such as Peptidase, transaminases, and ATPase. <ref> [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449320/?tool=pmcentrez&report=abstract Nealson, Ken. “A Korarchaeote yields to genome sequencing.” Proceedings of the National Academy of Sciences of the United States of America vol. 105,26 (2008): 8805-6. doi:10.1073/pnas.0804670105]</ref> | |||
The genome of <i>Ca.</i> K. cryptofilum is 1,590,757 base pairs long with an average G+C content of 49%. The arCOG of the archaean phyla crenarchaeota and euryarchaeota when compared with the sequenced genome of <i>Ca.</i> K. cryptofilum, showed that the organism shares its replication, recombination, repair, and cell division genes with that of <i>crenarchaeota</i> while it shares most of its transcription and translation genes with <i>euryarcahaeota</i>. | The genome of <i>Ca.</i> K. cryptofilum is 1,590,757 base pairs long with an average G+C content of 49%. The arCOG of the archaean phyla crenarchaeota and euryarchaeota when compared with the sequenced genome of <i>Ca.</i> K. cryptofilum, showed that the organism shares its replication, recombination, repair, and cell division genes with that of <i>crenarchaeota</i> while it shares most of its transcription and translation genes with <i>euryarcahaeota</i>. | ||
<ref> [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3344838/> Miller-Coleman, Robin L et al. “Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.” PloS one vol. 7,5 (2012): e35964. doi:10.1371/journal.pone.0035964]</ref> | <ref> [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3344838/> Miller-Coleman, Robin L et al. “Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.” PloS one vol. 7,5 (2012): e35964. doi:10.1371/journal.pone.0035964]</ref> | ||
Line 39: | Line 40: | ||
Information from <i>Korarchaeum cryptofilum</i>'s genome reveals it is a | |||
==Microbiome== | ==Microbiome== | ||
Include some current research, with a second image.<br><br> | Include some current research, with a second image.<br><br> | ||
The population of the <i>Korachaeota</i> is generally minute in its microbiome living in the biome. However in some cases they constitute 7% of all Archaea.<ref>[http://web.b.ebscohost.com.libproxy.kenyon.edu/ehost/detail/detail?vid=0&sid=644f27fc-0fae-4646-8be1-1e8ac0adc257%40pdc-v-sessmgr05&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=48092345&db=eih Reigstad, Laila Johanne, et al. “Diversity and Abundance of Korarchaeota in Terrestrial Hot Springs of Iceland and Kamchatka.” ISME Journal: Multidisciplinary Journal of Microbial Ecology, vol. 4, no. 3, Mar. 2010, pp. 346–356. EBSCOhost, doi:10.1038/ismej.2009.126.]</ref> | The population of the <i>Korachaeota</i> is generally minute in its microbiome living in the biome. However in some cases they constitute 7% of all Archaea.<ref>[http://web.b.ebscohost.com.libproxy.kenyon.edu/ehost/detail/detail?vid=0&sid=644f27fc-0fae-4646-8be1-1e8ac0adc257%40pdc-v-sessmgr05&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#AN=48092345&db=eih Reigstad, Laila Johanne, et al. “Diversity and Abundance of Korarchaeota in Terrestrial Hot Springs of Iceland and Kamchatka.” ISME Journal: Multidisciplinary Journal of Microbial Ecology, vol. 4, no. 3, Mar. 2010, pp. 346–356. EBSCOhost, doi:10.1038/ismej.2009.126.]</ref> | ||
=Conclusion== | =Conclusion== | ||
Overall text length should be at least 1,000 words (before counting references), with at least 2 images. Include at least 5 references under Reference section.<br><br> | Overall text length should be at least 1,000 words (before counting references), with at least 2 images. Include at least 5 references under Reference section.<br><br> |
Revision as of 23:02, 2 December 2019
Introduction
Candidatus Korarchaeum cryptofilum is a species of the proposed phylum Korarchaeota, or Xenarchaeota of the Archaea. The phylum is notoriously difficult to study given the environment in which it lives.[1] The Archean phylum is found mainly in hydrothermal environments such as hot springs, shallow water, and deep ocean. The organism's genome has mainly been studied to open understanding of Archaean evolution due to its distant detachment on the Archaea phyla.
Korarchaeum cryptofilum is a heterotroph, mostly living through anaerobic metabolism
Select a topic about genetics or evolution in a specific organism or ecosystem.
Select a topic about genetics or evolution in a specific organism or ecosystem.
The topic must include one section about microbes (bacteria, viruses, fungi, or protists). This is easy because all organisms and ecosystems have microbes.
Compose a title for your page.
Type your exact title in the Search window, then press Go. The MicrobeWiki will invite you to create a new page with this title.
Open the BIOL 116 Class 2019 template page in "edit."
Copy ALL the text from the edit window.
Then go to YOUR OWN page; edit tab. PASTE into your own page, and edit.
At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.
Closed double brackets: ]]
Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+
Genetics and Structure
Korarchaeum cryptofilum is a heterotroph, mostly living through anaerobic metabolism of peptide and amino acids. The organism uses enzymes such as Peptidase, transaminases, and ATPase. [2]
The genome of Ca. K. cryptofilum is 1,590,757 base pairs long with an average G+C content of 49%. The arCOG of the archaean phyla crenarchaeota and euryarchaeota when compared with the sequenced genome of Ca. K. cryptofilum, showed that the organism shares its replication, recombination, repair, and cell division genes with that of crenarchaeota while it shares most of its transcription and translation genes with euryarcahaeota.
[3]
Ca. K. cryptofilum has three rRNA genes (16S, 23S, and 5S rRNA). The organism has shown to produce 33 23S r-proteins and 27 16S r-proteins on its rRNA operon. The species is also found to have 45 tRNA genes on its genome with one initiator and 45 elongator tRNAs.[4][5]
Information from Korarchaeum cryptofilum's genome reveals it is a
Microbiome
Include some current research, with a second image.
The population of the Korachaeota is generally minute in its microbiome living in the biome. However in some cases they constitute 7% of all Archaea.[6]
Conclusion=
Overall text length should be at least 1,000 words (before counting references), with at least 2 images. Include at least 5 references under Reference section.
References
- ↑ Nealson, Ken. “A Korarchaeote yields to genome sequencing.” Proceedings of the National Academy of Sciences of the United States of America vol. 105,26 (2008): 8805-6. doi:10.1073/pnas.0804670105
- ↑ Nealson, Ken. “A Korarchaeote yields to genome sequencing.” Proceedings of the National Academy of Sciences of the United States of America vol. 105,26 (2008): 8805-6. doi:10.1073/pnas.0804670105
- ↑ > Miller-Coleman, Robin L et al. “Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.” PloS one vol. 7,5 (2012): e35964. doi:10.1371/journal.pone.0035964
- ↑ > Miller-Coleman, Robin L et al. “Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.” PloS one vol. 7,5 (2012): e35964. doi:10.1371/journal.pone.0035964
- ↑ James G et al. “A korarchaeal genome reveals insights into the evolution of the Archaea.” Proceedings of the National Academy of Sciences of the United States of America vol. 105,23 (2008): 8102-7. doi:10.1073/pnas.0801980105
- ↑ Reigstad, Laila Johanne, et al. “Diversity and Abundance of Korarchaeota in Terrestrial Hot Springs of Iceland and Kamchatka.” ISME Journal: Multidisciplinary Journal of Microbial Ecology, vol. 4, no. 3, Mar. 2010, pp. 346–356. EBSCOhost, doi:10.1038/ismej.2009.126.
Edited by [Charlie Stutz], student of Joan Slonczewski for BIOL 116 Information in Living Systems, 2019, Kenyon College.
Miller-Coleman, Robin L et al. “Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.” PloS one vol. 7,5 (2012): e35964. doi:10.1371/journal.pone.0035964